Metamath Proof Explorer


Theorem relowlpssretop

Description: The lower limit topology on the reals is strictly finer than the standard topology. (Contributed by ML, 2-Aug-2020)

Ref Expression
Hypothesis relowlpssretop.1 I = . 2
Assertion relowlpssretop topGen ran . topGen I

Proof

Step Hyp Ref Expression
1 relowlpssretop.1 I = . 2
2 1 relowlssretop topGen ran . topGen I
3 2re 2
4 1lt2 1 < 2
5 ovex 1 c V
6 sbcan [˙ 1 / x]˙ c x < c [˙ 1 / x]˙ c [˙ 1 / x]˙ x < c
7 1re 1
8 sbcg 1 [˙ 1 / x]˙ c c
9 7 8 ax-mp [˙ 1 / x]˙ c c
10 sbcbr123 [˙ 1 / x]˙ x < c 1 / x x 1 / x < 1 / x c
11 csbvarg 1 1 / x x = 1
12 7 11 ax-mp 1 / x x = 1
13 csbconstg 1 1 / x c = c
14 7 13 ax-mp 1 / x c = c
15 12 14 breq12i 1 / x x 1 / x < 1 / x c 1 1 / x < c
16 csbconstg 1 1 / x < = <
17 7 16 ax-mp 1 / x < = <
18 17 breqi 1 1 / x < c 1 < c
19 10 15 18 3bitri [˙ 1 / x]˙ x < c 1 < c
20 9 19 anbi12i [˙ 1 / x]˙ c [˙ 1 / x]˙ x < c c 1 < c
21 6 20 bitri [˙ 1 / x]˙ c x < c c 1 < c
22 sbceqg 1 [˙ 1 / x]˙ i = x c 1 / x i = 1 / x x c
23 7 22 ax-mp [˙ 1 / x]˙ i = x c 1 / x i = 1 / x x c
24 csbconstg 1 1 / x i = i
25 7 24 ax-mp 1 / x i = i
26 csbov123 1 / x x c = 1 / x x 1 / x . 1 / x c
27 csbconstg 1 1 / x . = .
28 7 27 ax-mp 1 / x . = .
29 12 14 28 oveq123i 1 / x x 1 / x . 1 / x c = 1 c
30 26 29 eqtri 1 / x x c = 1 c
31 25 30 eqeq12i 1 / x i = 1 / x x c i = 1 c
32 23 31 bitri [˙ 1 / x]˙ i = x c i = 1 c
33 sbcan [˙ 1 / x]˙ c x < c i = x c [˙ 1 / x]˙ c x < c [˙ 1 / x]˙ i = x c
34 simpr c x < c i = x c x x
35 simpl x c x
36 leid x x x
37 35 36 jccir x c x x x
38 rexr c c *
39 elico2 x c * x x c x x x x < c
40 38 39 sylan2 x c x x c x x x x < c
41 df-3an x x x x < c x x x x < c
42 40 41 bitrdi x c x x c x x x x < c
43 42 baibd x c x x x x x c x < c
44 37 43 mpdan x c x x c x < c
45 44 biimpar x c x < c x x c
46 45 adantr x c x < c i = x c x x c
47 eleq2 i = x c x i x x c
48 47 adantl x c x < c i = x c x i x x c
49 46 48 mpbird x c x < c i = x c x i
50 rexpssxrxp 2 * × *
51 opelxpi x c x c 2
52 50 51 sselid x c x c * × *
53 df-ico . = x * , c * z * | x z z < c
54 53 ixxf . : * × * 𝒫 *
55 54 fdmi dom . = * × *
56 55 eleq2i x c dom . x c * × *
57 53 mpofun Fun .
58 funfvima Fun . x c dom . x c 2 . x c . 2
59 57 58 mpan x c dom . x c 2 . x c . 2
60 56 59 sylbir x c * × * x c 2 . x c . 2
61 52 51 60 sylc x c . x c . 2
62 df-ov x c = . x c
63 61 62 1 3eltr4g x c x c I
64 eleq1 i = x c i I x c I
65 63 64 syl5ibrcom x c i = x c i I
66 65 imp x c i = x c i I
67 ioof . : * × * 𝒫
68 ffn . : * × * 𝒫 . Fn * × *
69 67 68 ax-mp . Fn * × *
70 ovelrn . Fn * × * o ran . a * b * o = a b
71 69 70 ax-mp o ran . a * b * o = a b
72 iooelexlt x a b y a b y < x
73 df-rex y a b y < x y y a b y < x
74 72 73 sylib x a b y y a b y < x
75 simpl y a b y < x y a b
76 75 a1i x a b y a b y < x y a b
77 53 elmpocl2 y x c c *
78 elioore x a b x
79 elico2 x c * y x c y x y y < c
80 78 79 sylan x a b c * y x c y x y y < c
81 simp2 y x y y < c x y
82 80 81 syl6bi x a b c * y x c x y
83 82 ex x a b c * y x c x y
84 83 com23 x a b y x c c * x y
85 77 84 mpdi x a b y x c x y
86 85 imp x a b y x c x y
87 78 rexrd x a b x *
88 87 adantr x a b y x c x *
89 elicore x y x c y
90 78 89 sylan x a b y x c y
91 90 rexrd x a b y x c y *
92 xrlenlt x * y * x y ¬ y < x
93 92 biimpd x * y * x y ¬ y < x
94 93 con2d x * y * y < x ¬ x y
95 88 91 94 syl2anc x a b y x c y < x ¬ x y
96 86 95 mt2d x a b y x c ¬ y < x
97 96 intnand x a b y x c ¬ y a b y < x
98 97 ex x a b y x c ¬ y a b y < x
99 98 con2d x a b y a b y < x ¬ y x c
100 76 99 jcad x a b y a b y < x y a b ¬ y x c
101 annim y a b ¬ y x c ¬ y a b y x c
102 100 101 syl6ib x a b y a b y < x ¬ y a b y x c
103 102 eximdv x a b y y a b y < x y ¬ y a b y x c
104 74 103 mpd x a b y ¬ y a b y x c
105 exnal y ¬ y a b y x c ¬ y y a b y x c
106 104 105 sylib x a b ¬ y y a b y x c
107 dfss2 a b x c y y a b y x c
108 106 107 sylnibr x a b ¬ a b x c
109 imnan x a b ¬ a b x c ¬ x a b a b x c
110 108 109 mpbi ¬ x a b a b x c
111 eleq2 o = a b x o x a b
112 sseq1 o = a b o x c a b x c
113 111 112 anbi12d o = a b x o o x c x a b a b x c
114 110 113 mtbiri o = a b ¬ x o o x c
115 sseq2 i = x c o i o x c
116 115 anbi2d i = x c x o o i x o o x c
117 116 notbid i = x c ¬ x o o i ¬ x o o x c
118 114 117 syl5ibrcom o = a b i = x c ¬ x o o i
119 118 a1i a * b * o = a b i = x c ¬ x o o i
120 119 rexlimivv a * b * o = a b i = x c ¬ x o o i
121 71 120 sylbi o ran . i = x c ¬ x o o i
122 121 com12 i = x c o ran . ¬ x o o i
123 122 ralrimiv i = x c o ran . ¬ x o o i
124 ralnex o ran . ¬ x o o i ¬ o ran . x o o i
125 123 124 sylib i = x c ¬ o ran . x o o i
126 125 adantl x c i = x c ¬ o ran . x o o i
127 66 126 jca x c i = x c i I ¬ o ran . x o o i
128 127 adantlr x c x < c i = x c i I ¬ o ran . x o o i
129 49 128 jca x c x < c i = x c x i i I ¬ o ran . x o o i
130 an12 x i i I ¬ o ran . x o o i i I x i ¬ o ran . x o o i
131 annim x i ¬ o ran . x o o i ¬ x i o ran . x o o i
132 131 anbi2i i I x i ¬ o ran . x o o i i I ¬ x i o ran . x o o i
133 130 132 bitri x i i I ¬ o ran . x o o i i I ¬ x i o ran . x o o i
134 129 133 sylib x c x < c i = x c i I ¬ x i o ran . x o o i
135 rspe i I ¬ x i o ran . x o o i i I ¬ x i o ran . x o o i
136 134 135 syl x c x < c i = x c i I ¬ x i o ran . x o o i
137 rexnal i I ¬ x i o ran . x o o i ¬ i I x i o ran . x o o i
138 136 137 sylib x c x < c i = x c ¬ i I x i o ran . x o o i
139 138 exp41 x c x < c i = x c ¬ i I x i o ran . x o o i
140 139 com4l c x < c i = x c x ¬ i I x i o ran . x o o i
141 140 imp41 c x < c i = x c x ¬ i I x i o ran . x o o i
142 rspe x ¬ i I x i o ran . x o o i x ¬ i I x i o ran . x o o i
143 34 141 142 syl2anc c x < c i = x c x x ¬ i I x i o ran . x o o i
144 rexnal x ¬ i I x i o ran . x o o i ¬ x i I x i o ran . x o o i
145 143 144 sylib c x < c i = x c x ¬ x i I x i o ran . x o o i
146 df-ico . = m * , n * z * | m z z < n
147 146 ixxex . V
148 imaexg . V . 2 V
149 147 148 ax-mp . 2 V
150 1 149 eqeltri I V
151 1 icoreunrn = I
152 unirnioo = ran .
153 151 152 eqtr3i I = ran .
154 tgss2 I V I = ran . topGen I topGen ran . x I i I x i o ran . x o o i
155 150 153 154 mp2an topGen I topGen ran . x I i I x i o ran . x o o i
156 151 raleqi x i I x i o ran . x o o i x I i I x i o ran . x o o i
157 155 156 bitr4i topGen I topGen ran . x i I x i o ran . x o o i
158 145 157 sylnibr c x < c i = x c x ¬ topGen I topGen ran .
159 158 sbcth 1 [˙ 1 / x]˙ c x < c i = x c x ¬ topGen I topGen ran .
160 7 159 ax-mp [˙ 1 / x]˙ c x < c i = x c x ¬ topGen I topGen ran .
161 sbcimg 1 [˙ 1 / x]˙ c x < c i = x c x ¬ topGen I topGen ran . [˙ 1 / x]˙ c x < c i = x c x [˙ 1 / x]˙ ¬ topGen I topGen ran .
162 7 161 ax-mp [˙ 1 / x]˙ c x < c i = x c x ¬ topGen I topGen ran . [˙ 1 / x]˙ c x < c i = x c x [˙ 1 / x]˙ ¬ topGen I topGen ran .
163 160 162 mpbi [˙ 1 / x]˙ c x < c i = x c x [˙ 1 / x]˙ ¬ topGen I topGen ran .
164 sbcel1v [˙ 1 / x]˙ x 1
165 7 164 mpbir [˙ 1 / x]˙ x
166 sbcan [˙ 1 / x]˙ c x < c i = x c x [˙ 1 / x]˙ c x < c i = x c [˙ 1 / x]˙ x
167 165 166 mpbiran2 [˙ 1 / x]˙ c x < c i = x c x [˙ 1 / x]˙ c x < c i = x c
168 sbcg 1 [˙ 1 / x]˙ ¬ topGen I topGen ran . ¬ topGen I topGen ran .
169 7 168 ax-mp [˙ 1 / x]˙ ¬ topGen I topGen ran . ¬ topGen I topGen ran .
170 163 167 169 3imtr3i [˙ 1 / x]˙ c x < c i = x c ¬ topGen I topGen ran .
171 33 170 sylbir [˙ 1 / x]˙ c x < c [˙ 1 / x]˙ i = x c ¬ topGen I topGen ran .
172 21 32 171 syl2anbr c 1 < c i = 1 c ¬ topGen I topGen ran .
173 172 sbcth 1 c V [˙ 1 c / i]˙ c 1 < c i = 1 c ¬ topGen I topGen ran .
174 5 173 ax-mp [˙ 1 c / i]˙ c 1 < c i = 1 c ¬ topGen I topGen ran .
175 sbcimg 1 c V [˙ 1 c / i]˙ c 1 < c i = 1 c ¬ topGen I topGen ran . [˙ 1 c / i]˙ c 1 < c i = 1 c [˙ 1 c / i]˙ ¬ topGen I topGen ran .
176 5 175 ax-mp [˙ 1 c / i]˙ c 1 < c i = 1 c ¬ topGen I topGen ran . [˙ 1 c / i]˙ c 1 < c i = 1 c [˙ 1 c / i]˙ ¬ topGen I topGen ran .
177 174 176 mpbi [˙ 1 c / i]˙ c 1 < c i = 1 c [˙ 1 c / i]˙ ¬ topGen I topGen ran .
178 sbcan [˙ 1 c / i]˙ c 1 < c i = 1 c [˙ 1 c / i]˙ c 1 < c [˙ 1 c / i]˙ i = 1 c
179 eqid 1 c = 1 c
180 eqsbc1 1 c V [˙ 1 c / i]˙ i = 1 c 1 c = 1 c
181 5 180 ax-mp [˙ 1 c / i]˙ i = 1 c 1 c = 1 c
182 179 181 mpbir [˙ 1 c / i]˙ i = 1 c
183 sbcg 1 c V [˙ 1 c / i]˙ c 1 < c c 1 < c
184 5 183 ax-mp [˙ 1 c / i]˙ c 1 < c c 1 < c
185 184 anbi1i [˙ 1 c / i]˙ c 1 < c [˙ 1 c / i]˙ i = 1 c c 1 < c [˙ 1 c / i]˙ i = 1 c
186 182 185 mpbiran2 [˙ 1 c / i]˙ c 1 < c [˙ 1 c / i]˙ i = 1 c c 1 < c
187 178 186 bitri [˙ 1 c / i]˙ c 1 < c i = 1 c c 1 < c
188 sbcg 1 c V [˙ 1 c / i]˙ ¬ topGen I topGen ran . ¬ topGen I topGen ran .
189 5 188 ax-mp [˙ 1 c / i]˙ ¬ topGen I topGen ran . ¬ topGen I topGen ran .
190 177 187 189 3imtr3i c 1 < c ¬ topGen I topGen ran .
191 190 sbcth 2 [˙ 2 / c]˙ c 1 < c ¬ topGen I topGen ran .
192 3 191 ax-mp [˙ 2 / c]˙ c 1 < c ¬ topGen I topGen ran .
193 sbcimg 2 [˙ 2 / c]˙ c 1 < c ¬ topGen I topGen ran . [˙ 2 / c]˙ c 1 < c [˙ 2 / c]˙ ¬ topGen I topGen ran .
194 3 193 ax-mp [˙ 2 / c]˙ c 1 < c ¬ topGen I topGen ran . [˙ 2 / c]˙ c 1 < c [˙ 2 / c]˙ ¬ topGen I topGen ran .
195 192 194 mpbi [˙ 2 / c]˙ c 1 < c [˙ 2 / c]˙ ¬ topGen I topGen ran .
196 sbcan [˙ 2 / c]˙ c 1 < c [˙ 2 / c]˙ c [˙ 2 / c]˙ 1 < c
197 sbcel1v [˙ 2 / c]˙ c 2
198 sbcbr123 [˙ 2 / c]˙ 1 < c 2 / c 1 2 / c < 2 / c c
199 csbconstg 2 2 / c 1 = 1
200 3 199 ax-mp 2 / c 1 = 1
201 csbvarg 2 2 / c c = 2
202 3 201 ax-mp 2 / c c = 2
203 200 202 breq12i 2 / c 1 2 / c < 2 / c c 1 2 / c < 2
204 csbconstg 2 2 / c < = <
205 3 204 ax-mp 2 / c < = <
206 205 breqi 1 2 / c < 2 1 < 2
207 198 203 206 3bitri [˙ 2 / c]˙ 1 < c 1 < 2
208 197 207 anbi12i [˙ 2 / c]˙ c [˙ 2 / c]˙ 1 < c 2 1 < 2
209 196 208 bitri [˙ 2 / c]˙ c 1 < c 2 1 < 2
210 sbcg 2 [˙ 2 / c]˙ ¬ topGen I topGen ran . ¬ topGen I topGen ran .
211 3 210 ax-mp [˙ 2 / c]˙ ¬ topGen I topGen ran . ¬ topGen I topGen ran .
212 195 209 211 3imtr3i 2 1 < 2 ¬ topGen I topGen ran .
213 3 4 212 mp2an ¬ topGen I topGen ran .
214 eqimss topGen I = topGen ran . topGen I topGen ran .
215 213 214 mto ¬ topGen I = topGen ran .
216 215 nesymir topGen ran . topGen I
217 df-pss topGen ran . topGen I topGen ran . topGen I topGen ran . topGen I
218 2 216 217 mpbir2an topGen ran . topGen I