Metamath Proof Explorer


Theorem iooelexlt

Description: An element of an open interval is not its smallest element. (Contributed by ML, 2-Aug-2020)

Ref Expression
Assertion iooelexlt X A B y A B y < X

Proof

Step Hyp Ref Expression
1 eliooxr X A B A * B *
2 1 simpld X A B A *
3 elxr A * A A = +∞ A = −∞
4 19.3v y X A B A X A B A
5 ovex A + X 2 V
6 nfcv _ y A + X 2
7 nfre1 y y A B y < X
8 elioore X A B X
9 readdcl A X A + X
10 9 rehalfcld A X A + X 2
11 8 10 sylan2 A X A B A + X 2
12 11 ancoms X A B A A + X 2
13 12 rexrd X A B A A + X 2 *
14 eliooord X A B A < X X < B
15 14 simpld X A B A < X
16 15 adantr X A B A A < X
17 avglt1 A X A < X A < A + X 2
18 8 17 sylan2 A X A B A < X A < A + X 2
19 18 ancoms X A B A A < X A < A + X 2
20 16 19 mpbid X A B A A < A + X 2
21 8 rexrd X A B X *
22 21 adantr X A B A X *
23 1 simprd X A B B *
24 23 adantr X A B A B *
25 avglt2 A X A < X A + X 2 < X
26 8 25 sylan2 A X A B A < X A + X 2 < X
27 26 ancoms X A B A A < X A + X 2 < X
28 16 27 mpbid X A B A A + X 2 < X
29 14 simprd X A B X < B
30 29 adantr X A B A X < B
31 13 22 24 28 30 xrlttrd X A B A A + X 2 < B
32 elioo1 A * B * A + X 2 A B A + X 2 * A < A + X 2 A + X 2 < B
33 1 32 syl X A B A + X 2 A B A + X 2 * A < A + X 2 A + X 2 < B
34 33 adantr X A B A A + X 2 A B A + X 2 * A < A + X 2 A + X 2 < B
35 13 20 31 34 mpbir3and X A B A A + X 2 A B
36 35 28 jca X A B A A + X 2 A B A + X 2 < X
37 eleq1 y = A + X 2 y A B A + X 2 A B
38 breq1 y = A + X 2 y < X A + X 2 < X
39 37 38 anbi12d y = A + X 2 y A B y < X A + X 2 A B A + X 2 < X
40 36 39 syl5ibr y = A + X 2 X A B A y A B y < X
41 rspe y A B y < X y A B y < X
42 40 41 syl6 y = A + X 2 X A B A y A B y < X
43 6 7 42 spcimgf A + X 2 V y X A B A y A B y < X
44 5 43 ax-mp y X A B A y A B y < X
45 4 44 sylbir X A B A y A B y < X
46 45 expcom A X A B y A B y < X
47 simpl X A B A = +∞ X A B
48 oveq1 A = +∞ A B = +∞ B
49 48 eleq2d A = +∞ X A B X +∞ B
50 49 adantl X A B A = +∞ X A B X +∞ B
51 pnfxr +∞ *
52 elioo2 +∞ * B * X +∞ B X +∞ < X X < B
53 51 52 mpan B * X +∞ B X +∞ < X X < B
54 53 biimpd B * X +∞ B X +∞ < X X < B
55 elioore X +∞ B X
56 rexr X X *
57 pnfnlt X * ¬ +∞ < X
58 56 57 syl X ¬ +∞ < X
59 58 intn3an2d X ¬ X +∞ < X X < B
60 55 59 syl X +∞ B ¬ X +∞ < X X < B
61 60 a1i B * X +∞ B ¬ X +∞ < X X < B
62 54 61 pm2.65d B * ¬ X +∞ B
63 23 62 syl X A B ¬ X +∞ B
64 63 pm2.21d X A B X +∞ B y A B y < X
65 64 adantr X A B A = +∞ X +∞ B y A B y < X
66 50 65 sylbid X A B A = +∞ X A B y A B y < X
67 47 66 mpd X A B A = +∞ y A B y < X
68 67 expcom A = +∞ X A B y A B y < X
69 19.3v y X A B A = −∞ X A B A = −∞
70 ovex X 1 V
71 nfcv _ y X 1
72 peano2rem X X 1
73 8 72 syl X A B X 1
74 mnflt X 1 −∞ < X 1
75 73 74 syl X A B −∞ < X 1
76 73 rexrd X A B X 1 *
77 8 ltm1d X A B X 1 < X
78 76 21 23 77 29 xrlttrd X A B X 1 < B
79 mnfxr −∞ *
80 elioo2 −∞ * B * X 1 −∞ B X 1 −∞ < X 1 X 1 < B
81 79 80 mpan B * X 1 −∞ B X 1 −∞ < X 1 X 1 < B
82 23 81 syl X A B X 1 −∞ B X 1 −∞ < X 1 X 1 < B
83 73 75 78 82 mpbir3and X A B X 1 −∞ B
84 83 adantr X A B A = −∞ X 1 −∞ B
85 oveq1 A = −∞ A B = −∞ B
86 85 eleq2d A = −∞ X 1 A B X 1 −∞ B
87 86 adantl X A B A = −∞ X 1 A B X 1 −∞ B
88 84 87 mpbird X A B A = −∞ X 1 A B
89 77 adantr X A B A = −∞ X 1 < X
90 88 89 jca X A B A = −∞ X 1 A B X 1 < X
91 90 adantr X A B A = −∞ y = X 1 X 1 A B X 1 < X
92 eleq1 y = X 1 y A B X 1 A B
93 breq1 y = X 1 y < X X 1 < X
94 92 93 anbi12d y = X 1 y A B y < X X 1 A B X 1 < X
95 94 adantl X A B A = −∞ y = X 1 y A B y < X X 1 A B X 1 < X
96 91 95 mpbird X A B A = −∞ y = X 1 y A B y < X
97 96 41 syl X A B A = −∞ y = X 1 y A B y < X
98 97 expcom y = X 1 X A B A = −∞ y A B y < X
99 71 7 98 spcimgf X 1 V y X A B A = −∞ y A B y < X
100 70 99 ax-mp y X A B A = −∞ y A B y < X
101 69 100 sylbir X A B A = −∞ y A B y < X
102 101 expcom A = −∞ X A B y A B y < X
103 46 68 102 3jaoi A A = +∞ A = −∞ X A B y A B y < X
104 3 103 sylbi A * X A B y A B y < X
105 2 104 mpcom X A B y A B y < X