Metamath Proof Explorer


Theorem icoreelrn

Description: A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020)

Ref Expression
Hypothesis icoreelrn.1 I=.2
Assertion icoreelrn ABz|Azz<BI

Proof

Step Hyp Ref Expression
1 icoreelrn.1 I=.2
2 icoreval ABAB=z|Azz<B
3 simpl ABA
4 simpr ABB
5 df-ico .=a*,b*z*|azz<b
6 5 ixxf .:*×*𝒫*
7 ffun .:*×*𝒫*Fun.
8 6 7 mp1i ABFun.
9 rexpssxrxp 2*×*
10 6 fdmi dom.=*×*
11 9 10 sseqtrri 2dom.
12 11 a1i AB2dom.
13 3 4 8 12 elovimad ABAB.2
14 13 1 eleqtrrdi ABABI
15 2 14 eqeltrrd ABz|Azz<BI