Metamath Proof Explorer


Theorem icoreelrn

Description: A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020)

Ref Expression
Hypothesis icoreelrn.1 I = . 2
Assertion icoreelrn A B z | A z z < B I

Proof

Step Hyp Ref Expression
1 icoreelrn.1 I = . 2
2 icoreval A B A B = z | A z z < B
3 simpl A B A
4 simpr A B B
5 df-ico . = a * , b * z * | a z z < b
6 5 ixxf . : * × * 𝒫 *
7 ffun . : * × * 𝒫 * Fun .
8 6 7 mp1i A B Fun .
9 rexpssxrxp 2 * × *
10 6 fdmi dom . = * × *
11 9 10 sseqtrri 2 dom .
12 11 a1i A B 2 dom .
13 3 4 8 12 elovimad A B A B . 2
14 13 1 eleqtrrdi A B A B I
15 2 14 eqeltrrd A B z | A z z < B I