| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isbasisrelowl.1 |
⊢ 𝐼 = ( [,) “ ( ℝ × ℝ ) ) |
| 2 |
1
|
icoreelrnab |
⊢ ( 𝑦 ∈ 𝐼 ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) |
| 3 |
1
|
icoreelrnab |
⊢ ( 𝑥 ∈ 𝐼 ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
| 4 |
1
|
isbasisrelowllem1 |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) |
| 5 |
4
|
ex |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 6 |
1
|
isbasisrelowllem2 |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) |
| 7 |
6
|
ex |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( ( 𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 8 |
5 7
|
jaod |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 9 |
|
incom |
⊢ ( 𝑦 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) |
| 10 |
1
|
isbasisrelowllem2 |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) ∧ ( 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑦 ∩ 𝑥 ) ∈ 𝐼 ) |
| 11 |
9 10
|
eqeltrrid |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) ∧ ( 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) |
| 12 |
11
|
ancom1s |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) |
| 13 |
12
|
ex |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( ( 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 14 |
1
|
isbasisrelowllem1 |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) ∧ ( 𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏 ) ) → ( 𝑦 ∩ 𝑥 ) ∈ 𝐼 ) |
| 15 |
9 14
|
eqeltrrid |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) ∧ ( 𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) |
| 16 |
15
|
ancom1s |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) |
| 17 |
16
|
ex |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( ( 𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 18 |
13 17
|
jaod |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( ( ( 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 19 |
|
3simpa |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) |
| 20 |
|
3simpa |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) |
| 21 |
|
letric |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑎 ≤ 𝑐 ∨ 𝑐 ≤ 𝑎 ) ) |
| 22 |
|
letric |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( 𝑏 ≤ 𝑑 ∨ 𝑑 ≤ 𝑏 ) ) |
| 23 |
21 22
|
anim12i |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( ( 𝑎 ≤ 𝑐 ∨ 𝑐 ≤ 𝑎 ) ∧ ( 𝑏 ≤ 𝑑 ∨ 𝑑 ≤ 𝑏 ) ) ) |
| 24 |
|
anddi |
⊢ ( ( ( 𝑎 ≤ 𝑐 ∨ 𝑐 ≤ 𝑎 ) ∧ ( 𝑏 ≤ 𝑑 ∨ 𝑑 ≤ 𝑏 ) ) ↔ ( ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏 ) ) ∨ ( ( 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏 ) ) ) ) |
| 25 |
23 24
|
sylib |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏 ) ) ∨ ( ( 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏 ) ) ) ) |
| 26 |
25
|
an4s |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏 ) ) ∨ ( ( 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏 ) ) ) ) |
| 27 |
19 20 26
|
syl2an |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏 ) ) ∨ ( ( 𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑 ) ∨ ( 𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏 ) ) ) ) |
| 28 |
8 18 27
|
mpjaod |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) |
| 29 |
28
|
ex |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) → ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 30 |
29
|
3expia |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } → ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) ) |
| 31 |
30
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } → ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 32 |
3 31
|
sylbi |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 33 |
32
|
com12 |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → ( 𝑥 ∈ 𝐼 → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 34 |
33
|
3expia |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } → ( 𝑥 ∈ 𝐼 → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) ) |
| 35 |
34
|
rexlimivv |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } → ( 𝑥 ∈ 𝐼 → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 36 |
2 35
|
sylbi |
⊢ ( 𝑦 ∈ 𝐼 → ( 𝑥 ∈ 𝐼 → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) ) |
| 37 |
36
|
impcom |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) |