| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isbasisrelowl.1 | ⊢ 𝐼  =  ( [,)  “  ( ℝ  ×  ℝ ) ) | 
						
							| 2 | 1 | icoreelrnab | ⊢ ( 𝑦  ∈  𝐼  ↔  ∃ 𝑐  ∈  ℝ ∃ 𝑑  ∈  ℝ 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) | 
						
							| 3 | 1 | icoreelrnab | ⊢ ( 𝑥  ∈  𝐼  ↔  ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 4 | 1 | isbasisrelowllem1 | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) | 
						
							| 5 | 4 | ex | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 6 | 1 | isbasisrelowllem2 | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) | 
						
							| 7 | 6 | ex | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 8 | 5 7 | jaod | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 9 |  | incom | ⊢ ( 𝑦  ∩  𝑥 )  =  ( 𝑥  ∩  𝑦 ) | 
						
							| 10 | 1 | isbasisrelowllem2 | ⊢ ( ( ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  ∧  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) )  ∧  ( 𝑐  ≤  𝑎  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑦  ∩  𝑥 )  ∈  𝐼 ) | 
						
							| 11 | 9 10 | eqeltrrid | ⊢ ( ( ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  ∧  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) )  ∧  ( 𝑐  ≤  𝑎  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) | 
						
							| 12 | 11 | ancom1s | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑐  ≤  𝑎  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) | 
						
							| 13 | 12 | ex | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( ( 𝑐  ≤  𝑎  ∧  𝑏  ≤  𝑑 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 14 | 1 | isbasisrelowllem1 | ⊢ ( ( ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  ∧  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) )  ∧  ( 𝑐  ≤  𝑎  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑦  ∩  𝑥 )  ∈  𝐼 ) | 
						
							| 15 | 9 14 | eqeltrrid | ⊢ ( ( ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  ∧  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) )  ∧  ( 𝑐  ≤  𝑎  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) | 
						
							| 16 | 15 | ancom1s | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑐  ≤  𝑎  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( ( 𝑐  ≤  𝑎  ∧  𝑑  ≤  𝑏 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 18 | 13 17 | jaod | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( ( ( 𝑐  ≤  𝑎  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑐  ≤  𝑎  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 19 |  | 3simpa | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  →  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ ) ) | 
						
							| 20 |  | 3simpa | ⊢ ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) ) | 
						
							| 21 |  | letric | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  ( 𝑎  ≤  𝑐  ∨  𝑐  ≤  𝑎 ) ) | 
						
							| 22 |  | letric | ⊢ ( ( 𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ )  →  ( 𝑏  ≤  𝑑  ∨  𝑑  ≤  𝑏 ) ) | 
						
							| 23 | 21 22 | anim12i | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( ( 𝑎  ≤  𝑐  ∨  𝑐  ≤  𝑎 )  ∧  ( 𝑏  ≤  𝑑  ∨  𝑑  ≤  𝑏 ) ) ) | 
						
							| 24 |  | anddi | ⊢ ( ( ( 𝑎  ≤  𝑐  ∨  𝑐  ≤  𝑎 )  ∧  ( 𝑏  ≤  𝑑  ∨  𝑑  ≤  𝑏 ) )  ↔  ( ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∨  ( ( 𝑐  ≤  𝑎  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑐  ≤  𝑎  ∧  𝑑  ≤  𝑏 ) ) ) ) | 
						
							| 25 | 23 24 | sylib | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∨  ( ( 𝑐  ≤  𝑎  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑐  ≤  𝑎  ∧  𝑑  ≤  𝑏 ) ) ) ) | 
						
							| 26 | 25 | an4s | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∨  ( ( 𝑐  ≤  𝑎  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑐  ≤  𝑎  ∧  𝑑  ≤  𝑏 ) ) ) ) | 
						
							| 27 | 19 20 26 | syl2an | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∨  ( ( 𝑐  ≤  𝑎  ∧  𝑏  ≤  𝑑 )  ∨  ( 𝑐  ≤  𝑎  ∧  𝑑  ≤  𝑏 ) ) ) ) | 
						
							| 28 | 8 18 27 | mpjaod | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  →  ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 30 | 29 | 3expia | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) ) | 
						
							| 31 | 30 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 32 | 3 31 | sylbi | ⊢ ( 𝑥  ∈  𝐼  →  ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 33 | 32 | com12 | ⊢ ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑥  ∈  𝐼  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 34 | 33 | 3expia | ⊢ ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ )  →  ( 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  →  ( 𝑥  ∈  𝐼  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) ) | 
						
							| 35 | 34 | rexlimivv | ⊢ ( ∃ 𝑐  ∈  ℝ ∃ 𝑑  ∈  ℝ 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  →  ( 𝑥  ∈  𝐼  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 36 | 2 35 | sylbi | ⊢ ( 𝑦  ∈  𝐼  →  ( 𝑥  ∈  𝐼  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) ) | 
						
							| 37 | 36 | impcom | ⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) |