Metamath Proof Explorer


Theorem icoreclin

Description: The set of closed-below, open-above intervals of reals is closed under finite intersection. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis isbasisrelowl.1 I = . 2
Assertion icoreclin x I y I x y I

Proof

Step Hyp Ref Expression
1 isbasisrelowl.1 I = . 2
2 1 icoreelrnab y I c d y = z | c z z < d
3 1 icoreelrnab x I a b x = z | a z z < b
4 1 isbasisrelowllem1 a b x = z | a z z < b c d y = z | c z z < d a c b d x y I
5 4 ex a b x = z | a z z < b c d y = z | c z z < d a c b d x y I
6 1 isbasisrelowllem2 a b x = z | a z z < b c d y = z | c z z < d a c d b x y I
7 6 ex a b x = z | a z z < b c d y = z | c z z < d a c d b x y I
8 5 7 jaod a b x = z | a z z < b c d y = z | c z z < d a c b d a c d b x y I
9 incom y x = x y
10 1 isbasisrelowllem2 c d y = z | c z z < d a b x = z | a z z < b c a b d y x I
11 9 10 eqeltrrid c d y = z | c z z < d a b x = z | a z z < b c a b d x y I
12 11 ancom1s a b x = z | a z z < b c d y = z | c z z < d c a b d x y I
13 12 ex a b x = z | a z z < b c d y = z | c z z < d c a b d x y I
14 1 isbasisrelowllem1 c d y = z | c z z < d a b x = z | a z z < b c a d b y x I
15 9 14 eqeltrrid c d y = z | c z z < d a b x = z | a z z < b c a d b x y I
16 15 ancom1s a b x = z | a z z < b c d y = z | c z z < d c a d b x y I
17 16 ex a b x = z | a z z < b c d y = z | c z z < d c a d b x y I
18 13 17 jaod a b x = z | a z z < b c d y = z | c z z < d c a b d c a d b x y I
19 3simpa a b x = z | a z z < b a b
20 3simpa c d y = z | c z z < d c d
21 letric a c a c c a
22 letric b d b d d b
23 21 22 anim12i a c b d a c c a b d d b
24 anddi a c c a b d d b a c b d a c d b c a b d c a d b
25 23 24 sylib a c b d a c b d a c d b c a b d c a d b
26 25 an4s a b c d a c b d a c d b c a b d c a d b
27 19 20 26 syl2an a b x = z | a z z < b c d y = z | c z z < d a c b d a c d b c a b d c a d b
28 8 18 27 mpjaod a b x = z | a z z < b c d y = z | c z z < d x y I
29 28 ex a b x = z | a z z < b c d y = z | c z z < d x y I
30 29 3expia a b x = z | a z z < b c d y = z | c z z < d x y I
31 30 rexlimivv a b x = z | a z z < b c d y = z | c z z < d x y I
32 3 31 sylbi x I c d y = z | c z z < d x y I
33 32 com12 c d y = z | c z z < d x I x y I
34 33 3expia c d y = z | c z z < d x I x y I
35 34 rexlimivv c d y = z | c z z < d x I x y I
36 2 35 sylbi y I x I x y I
37 36 impcom x I y I x y I