| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isbasisrelowl.1 | ⊢ 𝐼  =  ( [,)  “  ( ℝ  ×  ℝ ) ) | 
						
							| 2 |  | simplr1 | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  𝑐  ∈  ℝ ) | 
						
							| 3 |  | simplr2 | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  𝑑  ∈  ℝ ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑧 𝑎  ∈  ℝ | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑧 𝑏  ∈  ℝ | 
						
							| 6 |  | nfrab1 | ⊢ Ⅎ 𝑧 { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } | 
						
							| 7 | 6 | nfeq2 | ⊢ Ⅎ 𝑧 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } | 
						
							| 8 | 4 5 7 | nf3an | ⊢ Ⅎ 𝑧 ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑧 𝑐  ∈  ℝ | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑧 𝑑  ∈  ℝ | 
						
							| 11 |  | nfrab1 | ⊢ Ⅎ 𝑧 { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } | 
						
							| 12 | 11 | nfeq2 | ⊢ Ⅎ 𝑧 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } | 
						
							| 13 | 9 10 12 | nf3an | ⊢ Ⅎ 𝑧 ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) | 
						
							| 14 | 8 13 | nfan | ⊢ Ⅎ 𝑧 ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) | 
						
							| 16 | 14 15 | nfan | ⊢ Ⅎ 𝑧 ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑧 ( 𝑥  ∩  𝑦 ) | 
						
							| 18 |  | simp3 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  →  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) | 
						
							| 20 |  | elin | ⊢ ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  𝑥  ∧  𝑧  ∈  𝑦 ) ) | 
						
							| 21 |  | eleq2 | ⊢ ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 22 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) | 
						
							| 23 | 21 22 | bitrdi | ⊢ ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( 𝑧  ∈  𝑥  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 24 | 23 | anbi1d | ⊢ ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( ( 𝑧  ∈  𝑥  ∧  𝑧  ∈  𝑦 )  ↔  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  𝑧  ∈  𝑦 ) ) ) | 
						
							| 25 | 20 24 | bitrid | ⊢ ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  𝑧  ∈  𝑦 ) ) ) | 
						
							| 26 |  | eleq2 | ⊢ ( 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  →  ( 𝑧  ∈  𝑦  ↔  𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 27 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 28 | 26 27 | bitrdi | ⊢ ( 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  →  ( 𝑧  ∈  𝑦  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 29 | 28 | anbi2d | ⊢ ( 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  →  ( ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  𝑧  ∈  𝑦 )  ↔  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 30 | 25 29 | sylan9bb | ⊢ ( ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 31 |  | an4 | ⊢ ( ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  ↔  ( ( 𝑧  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 32 |  | anidm | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ↔  𝑧  ∈  ℝ ) | 
						
							| 33 | 32 | anbi1i | ⊢ ( ( ( 𝑧  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 34 | 31 33 | bitri | ⊢ ( ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 35 |  | an4 | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑐  ≤  𝑧 )  ∧  ( 𝑧  <  𝑑  ∧  𝑧  <  𝑏 ) ) ) | 
						
							| 36 |  | an42 | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑐  ≤  𝑧 )  ∧  ( 𝑧  <  𝑑  ∧  𝑧  <  𝑏 ) ) ) | 
						
							| 37 | 36 | bicomi | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑐  ≤  𝑧 )  ∧  ( 𝑧  <  𝑑  ∧  𝑧  <  𝑏 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 38 | 35 37 | bitri | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 39 | 38 | bicomi | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) | 
						
							| 40 | 39 | anbi2i | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 41 | 34 40 | bitri | ⊢ ( ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 42 | 30 41 | bitrdi | ⊢ ( ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 43 | 18 19 42 | syl2an | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 45 |  | simpl | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) )  →  𝑧  ∈  ℝ ) | 
						
							| 46 |  | simprrl | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) )  →  𝑐  ≤  𝑧 ) | 
						
							| 47 |  | simprlr | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) )  →  𝑧  <  𝑑 ) | 
						
							| 48 | 45 46 47 | jca32 | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) )  →  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 49 | 44 48 | biimtrdi | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  →  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 50 |  | 3simpa | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  →  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ ) ) | 
						
							| 51 |  | 3simpa | ⊢ ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) ) | 
						
							| 52 | 50 51 | anim12i | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) ) ) | 
						
							| 53 |  | letr | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑐  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑐  ≤  𝑧 )  →  𝑎  ≤  𝑧 ) ) | 
						
							| 54 | 53 | 3expia | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑎  ≤  𝑐  ∧  𝑐  ≤  𝑧 )  →  𝑎  ≤  𝑧 ) ) ) | 
						
							| 55 | 54 | exp4a | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  ( 𝑧  ∈  ℝ  →  ( 𝑎  ≤  𝑐  →  ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 ) ) ) ) | 
						
							| 56 | 55 | ad2ant2r | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( 𝑧  ∈  ℝ  →  ( 𝑎  ≤  𝑐  →  ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 ) ) ) ) | 
						
							| 57 |  | ltletr | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( ( 𝑧  <  𝑑  ∧  𝑑  ≤  𝑏 )  →  𝑧  <  𝑏 ) ) | 
						
							| 58 | 57 | 3com13 | ⊢ ( ( 𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑧  <  𝑑  ∧  𝑑  ≤  𝑏 )  →  𝑧  <  𝑏 ) ) | 
						
							| 59 | 58 | expcomd | ⊢ ( ( 𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑑  ≤  𝑏  →  ( 𝑧  <  𝑑  →  𝑧  <  𝑏 ) ) ) | 
						
							| 60 | 59 | 3expia | ⊢ ( ( 𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ )  →  ( 𝑧  ∈  ℝ  →  ( 𝑑  ≤  𝑏  →  ( 𝑧  <  𝑑  →  𝑧  <  𝑏 ) ) ) ) | 
						
							| 61 | 60 | ad2ant2l | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( 𝑧  ∈  ℝ  →  ( 𝑑  ≤  𝑏  →  ( 𝑧  <  𝑑  →  𝑧  <  𝑏 ) ) ) ) | 
						
							| 62 | 56 61 | jcad | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑎  ≤  𝑐  →  ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 ) )  ∧  ( 𝑑  ≤  𝑏  →  ( 𝑧  <  𝑑  →  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 63 |  | anim12 | ⊢ ( ( ( 𝑎  ≤  𝑐  →  ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 ) )  ∧  ( 𝑑  ≤  𝑏  →  ( 𝑧  <  𝑑  →  𝑧  <  𝑏 ) ) )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 )  →  ( ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 )  ∧  ( 𝑧  <  𝑑  →  𝑧  <  𝑏 ) ) ) ) | 
						
							| 64 | 62 63 | syl6 | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 )  →  ( ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 )  ∧  ( 𝑧  <  𝑑  →  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 65 | 64 | com23 | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 )  ∧  ( 𝑧  <  𝑑  →  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 66 |  | anim12 | ⊢ ( ( ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 )  ∧  ( 𝑧  <  𝑑  →  𝑧  <  𝑏 ) )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 )  →  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) | 
						
							| 67 | 65 66 | syl8 | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 )  →  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 68 | 67 | imp31 | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 )  →  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) | 
						
							| 69 | 68 | ancrd | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 )  →  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 70 |  | an42 | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑐  ≤  𝑧 )  ∧  ( 𝑧  <  𝑏  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 71 |  | an4 | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑐  ≤  𝑧 )  ∧  ( 𝑧  <  𝑏  ∧  𝑧  <  𝑑 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 72 | 70 71 | bitri | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 73 | 69 72 | imbitrrdi | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 )  →  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 74 |  | simpr | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  𝑧  ∈  ℝ )  →  𝑧  ∈  ℝ ) | 
						
							| 75 | 73 74 | jctild | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 )  →  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 76 | 52 75 | sylanl1 | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 )  →  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 77 | 76 | imp | ⊢ ( ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  𝑧  ∈  ℝ )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) )  →  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 78 | 77 | an32s | ⊢ ( ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) )  ∧  𝑧  ∈  ℝ )  →  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 79 | 44 | adantr | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) )  ∧  𝑧  ∈  ℝ )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) ) | 
						
							| 81 | 78 80 | mpbird | ⊢ ( ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) )  ∧  𝑧  ∈  ℝ )  →  𝑧  ∈  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 82 | 81 | expl | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  𝑧  ∈  ℝ )  →  𝑧  ∈  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 83 | 82 | ancomsd | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) )  →  𝑧  ∈  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 84 | 49 83 | impbid | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 85 | 84 27 | bitr4di | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 86 | 16 17 11 85 | eqrd | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) | 
						
							| 87 | 3 86 | jca | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑑  ∈  ℝ  ∧  ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 88 | 87 | 19.8ad | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ  ∧  ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 89 |  | df-rex | ⊢ ( ∃ 𝑑  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  ↔  ∃ 𝑑 ( 𝑑  ∈  ℝ  ∧  ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 90 | 88 89 | sylibr | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ∃ 𝑑  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) | 
						
							| 91 | 2 90 | jca | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑐  ∈  ℝ  ∧  ∃ 𝑑  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 92 | 91 | 19.8ad | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ∃ 𝑐 ( 𝑐  ∈  ℝ  ∧  ∃ 𝑑  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 93 |  | df-rex | ⊢ ( ∃ 𝑐  ∈  ℝ ∃ 𝑑  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  ↔  ∃ 𝑐 ( 𝑐  ∈  ℝ  ∧  ∃ 𝑑  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 94 | 92 93 | sylibr | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ∃ 𝑐  ∈  ℝ ∃ 𝑑  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) | 
						
							| 95 | 1 | icoreelrnab | ⊢ ( ( 𝑥  ∩  𝑦 )  ∈  𝐼  ↔  ∃ 𝑐  ∈  ℝ ∃ 𝑑  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) | 
						
							| 96 | 94 95 | sylibr | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑑  ≤  𝑏 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) |