| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0hmop |
|- 0hop e. HrmOp |
| 2 |
|
idhmop |
|- Iop e. HrmOp |
| 3 |
|
leop2 |
|- ( ( 0hop e. HrmOp /\ Iop e. HrmOp ) -> ( 0hop <_op Iop <-> A. x e. ~H ( ( 0hop ` x ) .ih x ) <_ ( ( Iop ` x ) .ih x ) ) ) |
| 4 |
1 2 3
|
mp2an |
|- ( 0hop <_op Iop <-> A. x e. ~H ( ( 0hop ` x ) .ih x ) <_ ( ( Iop ` x ) .ih x ) ) |
| 5 |
|
hiidge0 |
|- ( x e. ~H -> 0 <_ ( x .ih x ) ) |
| 6 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
| 7 |
6
|
oveq1d |
|- ( x e. ~H -> ( ( 0hop ` x ) .ih x ) = ( 0h .ih x ) ) |
| 8 |
|
hi01 |
|- ( x e. ~H -> ( 0h .ih x ) = 0 ) |
| 9 |
7 8
|
eqtrd |
|- ( x e. ~H -> ( ( 0hop ` x ) .ih x ) = 0 ) |
| 10 |
|
hoival |
|- ( x e. ~H -> ( Iop ` x ) = x ) |
| 11 |
10
|
oveq1d |
|- ( x e. ~H -> ( ( Iop ` x ) .ih x ) = ( x .ih x ) ) |
| 12 |
5 9 11
|
3brtr4d |
|- ( x e. ~H -> ( ( 0hop ` x ) .ih x ) <_ ( ( Iop ` x ) .ih x ) ) |
| 13 |
4 12
|
mprgbir |
|- 0hop <_op Iop |