Metamath Proof Explorer


Theorem idleop

Description: The identity operator is a positive operator. Part of Example 12.2(i) in Young p. 142. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion idleop
|- 0hop <_op Iop

Proof

Step Hyp Ref Expression
1 0hmop
 |-  0hop e. HrmOp
2 idhmop
 |-  Iop e. HrmOp
3 leop2
 |-  ( ( 0hop e. HrmOp /\ Iop e. HrmOp ) -> ( 0hop <_op Iop <-> A. x e. ~H ( ( 0hop ` x ) .ih x ) <_ ( ( Iop ` x ) .ih x ) ) )
4 1 2 3 mp2an
 |-  ( 0hop <_op Iop <-> A. x e. ~H ( ( 0hop ` x ) .ih x ) <_ ( ( Iop ` x ) .ih x ) )
5 hiidge0
 |-  ( x e. ~H -> 0 <_ ( x .ih x ) )
6 ho0val
 |-  ( x e. ~H -> ( 0hop ` x ) = 0h )
7 6 oveq1d
 |-  ( x e. ~H -> ( ( 0hop ` x ) .ih x ) = ( 0h .ih x ) )
8 hi01
 |-  ( x e. ~H -> ( 0h .ih x ) = 0 )
9 7 8 eqtrd
 |-  ( x e. ~H -> ( ( 0hop ` x ) .ih x ) = 0 )
10 hoival
 |-  ( x e. ~H -> ( Iop ` x ) = x )
11 10 oveq1d
 |-  ( x e. ~H -> ( ( Iop ` x ) .ih x ) = ( x .ih x ) )
12 5 9 11 3brtr4d
 |-  ( x e. ~H -> ( ( 0hop ` x ) .ih x ) <_ ( ( Iop ` x ) .ih x ) )
13 4 12 mprgbir
 |-  0hop <_op Iop