Metamath Proof Explorer


Theorem idleop

Description: The identity operator is a positive operator. Part of Example 12.2(i) in Young p. 142. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion idleop 0hopopIop

Proof

Step Hyp Ref Expression
1 0hmop 0hopHrmOp
2 idhmop IopHrmOp
3 leop2 0hopHrmOpIopHrmOp0hopopIopx0hopxihxIopxihx
4 1 2 3 mp2an 0hopopIopx0hopxihxIopxihx
5 hiidge0 x0xihx
6 ho0val x0hopx=0
7 6 oveq1d x0hopxihx=0ihx
8 hi01 x0ihx=0
9 7 8 eqtrd x0hopxihx=0
10 hoival xIopx=x
11 10 oveq1d xIopxihx=xihx
12 5 9 11 3brtr4d x0hopxihxIopxihx
13 4 12 mprgbir 0hopopIop