Metamath Proof Explorer


Theorem leop2

Description: Ordering relation for operators. Definition of operator ordering in Young p. 141. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leop2 T HrmOp U HrmOp T op U x T x ih x U x ih x

Proof

Step Hyp Ref Expression
1 leop T HrmOp U HrmOp T op U x 0 U - op T x ih x
2 hmopf T HrmOp T :
3 hmopf U HrmOp U :
4 2 3 anim12i T HrmOp U HrmOp T : U :
5 hodval U : T : x U - op T x = U x - T x
6 5 3com12 T : U : x U - op T x = U x - T x
7 6 3expa T : U : x U - op T x = U x - T x
8 7 oveq1d T : U : x U - op T x ih x = U x - T x ih x
9 ffvelrn U : x U x
10 9 adantll T : U : x U x
11 ffvelrn T : x T x
12 11 adantlr T : U : x T x
13 simpr T : U : x x
14 his2sub U x T x x U x - T x ih x = U x ih x T x ih x
15 10 12 13 14 syl3anc T : U : x U x - T x ih x = U x ih x T x ih x
16 8 15 eqtrd T : U : x U - op T x ih x = U x ih x T x ih x
17 4 16 sylan T HrmOp U HrmOp x U - op T x ih x = U x ih x T x ih x
18 17 breq2d T HrmOp U HrmOp x 0 U - op T x ih x 0 U x ih x T x ih x
19 hmopre U HrmOp x U x ih x
20 19 adantll T HrmOp U HrmOp x U x ih x
21 hmopre T HrmOp x T x ih x
22 21 adantlr T HrmOp U HrmOp x T x ih x
23 20 22 subge0d T HrmOp U HrmOp x 0 U x ih x T x ih x T x ih x U x ih x
24 18 23 bitrd T HrmOp U HrmOp x 0 U - op T x ih x T x ih x U x ih x
25 24 ralbidva T HrmOp U HrmOp x 0 U - op T x ih x x T x ih x U x ih x
26 1 25 bitrd T HrmOp U HrmOp T op U x T x ih x U x ih x