Step |
Hyp |
Ref |
Expression |
1 |
|
leop |
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T <_op U <-> A. x e. ~H 0 <_ ( ( ( U -op T ) ` x ) .ih x ) ) ) |
2 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
3 |
|
hmopf |
|- ( U e. HrmOp -> U : ~H --> ~H ) |
4 |
2 3
|
anim12i |
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T : ~H --> ~H /\ U : ~H --> ~H ) ) |
5 |
|
hodval |
|- ( ( U : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( U -op T ) ` x ) = ( ( U ` x ) -h ( T ` x ) ) ) |
6 |
5
|
3com12 |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( U -op T ) ` x ) = ( ( U ` x ) -h ( T ` x ) ) ) |
7 |
6
|
3expa |
|- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( U -op T ) ` x ) = ( ( U ` x ) -h ( T ` x ) ) ) |
8 |
7
|
oveq1d |
|- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( U -op T ) ` x ) .ih x ) = ( ( ( U ` x ) -h ( T ` x ) ) .ih x ) ) |
9 |
|
ffvelrn |
|- ( ( U : ~H --> ~H /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
10 |
9
|
adantll |
|- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
11 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
12 |
11
|
adantlr |
|- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
13 |
|
simpr |
|- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> x e. ~H ) |
14 |
|
his2sub |
|- ( ( ( U ` x ) e. ~H /\ ( T ` x ) e. ~H /\ x e. ~H ) -> ( ( ( U ` x ) -h ( T ` x ) ) .ih x ) = ( ( ( U ` x ) .ih x ) - ( ( T ` x ) .ih x ) ) ) |
15 |
10 12 13 14
|
syl3anc |
|- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( U ` x ) -h ( T ` x ) ) .ih x ) = ( ( ( U ` x ) .ih x ) - ( ( T ` x ) .ih x ) ) ) |
16 |
8 15
|
eqtrd |
|- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( U -op T ) ` x ) .ih x ) = ( ( ( U ` x ) .ih x ) - ( ( T ` x ) .ih x ) ) ) |
17 |
4 16
|
sylan |
|- ( ( ( T e. HrmOp /\ U e. HrmOp ) /\ x e. ~H ) -> ( ( ( U -op T ) ` x ) .ih x ) = ( ( ( U ` x ) .ih x ) - ( ( T ` x ) .ih x ) ) ) |
18 |
17
|
breq2d |
|- ( ( ( T e. HrmOp /\ U e. HrmOp ) /\ x e. ~H ) -> ( 0 <_ ( ( ( U -op T ) ` x ) .ih x ) <-> 0 <_ ( ( ( U ` x ) .ih x ) - ( ( T ` x ) .ih x ) ) ) ) |
19 |
|
hmopre |
|- ( ( U e. HrmOp /\ x e. ~H ) -> ( ( U ` x ) .ih x ) e. RR ) |
20 |
19
|
adantll |
|- ( ( ( T e. HrmOp /\ U e. HrmOp ) /\ x e. ~H ) -> ( ( U ` x ) .ih x ) e. RR ) |
21 |
|
hmopre |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. RR ) |
22 |
21
|
adantlr |
|- ( ( ( T e. HrmOp /\ U e. HrmOp ) /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. RR ) |
23 |
20 22
|
subge0d |
|- ( ( ( T e. HrmOp /\ U e. HrmOp ) /\ x e. ~H ) -> ( 0 <_ ( ( ( U ` x ) .ih x ) - ( ( T ` x ) .ih x ) ) <-> ( ( T ` x ) .ih x ) <_ ( ( U ` x ) .ih x ) ) ) |
24 |
18 23
|
bitrd |
|- ( ( ( T e. HrmOp /\ U e. HrmOp ) /\ x e. ~H ) -> ( 0 <_ ( ( ( U -op T ) ` x ) .ih x ) <-> ( ( T ` x ) .ih x ) <_ ( ( U ` x ) .ih x ) ) ) |
25 |
24
|
ralbidva |
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( A. x e. ~H 0 <_ ( ( ( U -op T ) ` x ) .ih x ) <-> A. x e. ~H ( ( T ` x ) .ih x ) <_ ( ( U ` x ) .ih x ) ) ) |
26 |
1 25
|
bitrd |
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T <_op U <-> A. x e. ~H ( ( T ` x ) .ih x ) <_ ( ( U ` x ) .ih x ) ) ) |