Metamath Proof Explorer


Theorem leop

Description: Ordering relation for operators. Definition of positive operator ordering in Kreyszig p. 470. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leop
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T <_op U <-> A. x e. ~H 0 <_ ( ( ( U -op T ) ` x ) .ih x ) ) )

Proof

Step Hyp Ref Expression
1 leopg
 |-  ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T <_op U <-> ( ( U -op T ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( U -op T ) ` x ) .ih x ) ) ) )
2 hmopd
 |-  ( ( U e. HrmOp /\ T e. HrmOp ) -> ( U -op T ) e. HrmOp )
3 2 ancoms
 |-  ( ( T e. HrmOp /\ U e. HrmOp ) -> ( U -op T ) e. HrmOp )
4 3 biantrurd
 |-  ( ( T e. HrmOp /\ U e. HrmOp ) -> ( A. x e. ~H 0 <_ ( ( ( U -op T ) ` x ) .ih x ) <-> ( ( U -op T ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( U -op T ) ` x ) .ih x ) ) ) )
5 1 4 bitr4d
 |-  ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T <_op U <-> A. x e. ~H 0 <_ ( ( ( U -op T ) ` x ) .ih x ) ) )