Step |
Hyp |
Ref |
Expression |
1 |
|
leopg |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 ≤op 𝑈 ↔ ( ( 𝑈 −op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
2 |
|
hmopd |
⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑈 −op 𝑇 ) ∈ HrmOp ) |
3 |
2
|
ancoms |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑈 −op 𝑇 ) ∈ HrmOp ) |
4 |
3
|
biantrurd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ( ( 𝑈 −op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
5 |
1 4
|
bitr4d |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 ≤op 𝑈 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |