Metamath Proof Explorer


Theorem leop

Description: Ordering relation for operators. Definition of positive operator ordering in Kreyszig p. 470. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leop ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇op 𝑈 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 leopg ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇op 𝑈 ↔ ( ( 𝑈op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) )
2 hmopd ( ( 𝑈 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑈op 𝑇 ) ∈ HrmOp )
3 2 ancoms ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑈op 𝑇 ) ∈ HrmOp )
4 3 biantrurd ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ( ( 𝑈op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) )
5 1 4 bitr4d ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇op 𝑈 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )