Metamath Proof Explorer


Theorem leopg

Description: Ordering relation for positive operators. Definition of positive operator ordering in Kreyszig p. 470. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leopg ( ( 𝑇𝐴𝑈𝐵 ) → ( 𝑇op 𝑈 ↔ ( ( 𝑈op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑡 = 𝑇 → ( 𝑢op 𝑡 ) = ( 𝑢op 𝑇 ) )
2 1 eleq1d ( 𝑡 = 𝑇 → ( ( 𝑢op 𝑡 ) ∈ HrmOp ↔ ( 𝑢op 𝑇 ) ∈ HrmOp ) )
3 1 fveq1d ( 𝑡 = 𝑇 → ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) = ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) )
4 3 oveq1d ( 𝑡 = 𝑇 → ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
5 4 breq2d ( 𝑡 = 𝑇 → ( 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
6 5 ralbidv ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
7 2 6 anbi12d ( 𝑡 = 𝑇 → ( ( ( 𝑢op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ↔ ( ( 𝑢op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) )
8 oveq1 ( 𝑢 = 𝑈 → ( 𝑢op 𝑇 ) = ( 𝑈op 𝑇 ) )
9 8 eleq1d ( 𝑢 = 𝑈 → ( ( 𝑢op 𝑇 ) ∈ HrmOp ↔ ( 𝑈op 𝑇 ) ∈ HrmOp ) )
10 8 fveq1d ( 𝑢 = 𝑈 → ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) )
11 10 oveq1d ( 𝑢 = 𝑈 → ( ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
12 11 breq2d ( 𝑢 = 𝑈 → ( 0 ≤ ( ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
13 12 ralbidv ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
14 9 13 anbi12d ( 𝑢 = 𝑈 → ( ( ( 𝑢op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ↔ ( ( 𝑈op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) )
15 df-leop op = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑢op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) }
16 7 14 15 brabg ( ( 𝑇𝐴𝑈𝐵 ) → ( 𝑇op 𝑈 ↔ ( ( 𝑈op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) )