Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑡 = 𝑇 → ( 𝑢 −op 𝑡 ) = ( 𝑢 −op 𝑇 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑢 −op 𝑡 ) ∈ HrmOp ↔ ( 𝑢 −op 𝑇 ) ∈ HrmOp ) ) |
3 |
1
|
fveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) = ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
5 |
4
|
breq2d |
⊢ ( 𝑡 = 𝑇 → ( 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
7 |
2 6
|
anbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( ( 𝑢 −op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ↔ ( ( 𝑢 −op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 −op 𝑇 ) = ( 𝑈 −op 𝑇 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 −op 𝑇 ) ∈ HrmOp ↔ ( 𝑈 −op 𝑇 ) ∈ HrmOp ) ) |
10 |
8
|
fveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
12 |
11
|
breq2d |
⊢ ( 𝑢 = 𝑈 → ( 0 ≤ ( ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
14 |
9 13
|
anbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑢 −op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ↔ ( ( 𝑈 −op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
15 |
|
df-leop |
⊢ ≤op = { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑢 −op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) } |
16 |
7 14 15
|
brabg |
⊢ ( ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐵 ) → ( 𝑇 ≤op 𝑈 ↔ ( ( 𝑈 −op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |