| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0hmop |
⊢ 0hop ∈ HrmOp |
| 2 |
|
idhmop |
⊢ Iop ∈ HrmOp |
| 3 |
|
leop2 |
⊢ ( ( 0hop ∈ HrmOp ∧ Iop ∈ HrmOp ) → ( 0hop ≤op Iop ↔ ∀ 𝑥 ∈ ℋ ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( Iop ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( 0hop ≤op Iop ↔ ∀ 𝑥 ∈ ℋ ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( Iop ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 5 |
|
hiidge0 |
⊢ ( 𝑥 ∈ ℋ → 0 ≤ ( 𝑥 ·ih 𝑥 ) ) |
| 6 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) = ( 0ℎ ·ih 𝑥 ) ) |
| 8 |
|
hi01 |
⊢ ( 𝑥 ∈ ℋ → ( 0ℎ ·ih 𝑥 ) = 0 ) |
| 9 |
7 8
|
eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) = 0 ) |
| 10 |
|
hoival |
⊢ ( 𝑥 ∈ ℋ → ( Iop ‘ 𝑥 ) = 𝑥 ) |
| 11 |
10
|
oveq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( Iop ‘ 𝑥 ) ·ih 𝑥 ) = ( 𝑥 ·ih 𝑥 ) ) |
| 12 |
5 9 11
|
3brtr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( Iop ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 13 |
4 12
|
mprgbir |
⊢ 0hop ≤op Iop |