| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ℋ ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ↔ ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 2 |
|
hmopre |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
| 3 |
|
hmopre |
⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
| 4 |
|
addge0 |
⊢ ( ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ∧ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) → 0 ≤ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 5 |
4
|
ex |
⊢ ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ∧ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) → ( ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → 0 ≤ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 6 |
2 3 5
|
syl2an |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) ) → ( ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → 0 ≤ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 7 |
6
|
anandirs |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → 0 ≤ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 8 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
| 9 |
|
hmopf |
⊢ ( 𝑈 ∈ HrmOp → 𝑈 : ℋ ⟶ ℋ ) |
| 10 |
8 9
|
anim12i |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ) |
| 11 |
|
hosval |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 13 |
12
|
3expa |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 14 |
|
ffvelcdm |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 15 |
14
|
adantlr |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 16 |
|
ffvelcdm |
⊢ ( ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑈 ‘ 𝑥 ) ∈ ℋ ) |
| 17 |
16
|
adantll |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑈 ‘ 𝑥 ) ∈ ℋ ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) |
| 19 |
|
ax-his2 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑈 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 20 |
15 17 18 19
|
syl3anc |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 21 |
13 20
|
eqtrd |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 22 |
10 21
|
sylan |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 23 |
22
|
breq2d |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( 0 ≤ ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 24 |
7 23
|
sylibrd |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → 0 ≤ ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 25 |
24
|
ralimdva |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 26 |
1 25
|
biimtrrid |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 27 |
|
leoppos |
⊢ ( 𝑇 ∈ HrmOp → ( 0hop ≤op 𝑇 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 28 |
|
leoppos |
⊢ ( 𝑈 ∈ HrmOp → ( 0hop ≤op 𝑈 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 29 |
27 28
|
bi2anan9 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈 ) ↔ ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 30 |
|
hmops |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 +op 𝑈 ) ∈ HrmOp ) |
| 31 |
|
leoppos |
⊢ ( ( 𝑇 +op 𝑈 ) ∈ HrmOp → ( 0hop ≤op ( 𝑇 +op 𝑈 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 0hop ≤op ( 𝑇 +op 𝑈 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 33 |
26 29 32
|
3imtr4d |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈 ) → 0hop ≤op ( 𝑇 +op 𝑈 ) ) ) |
| 34 |
33
|
imp |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 0hop ≤op 𝑇 ∧ 0hop ≤op 𝑈 ) ) → 0hop ≤op ( 𝑇 +op 𝑈 ) ) |