| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmopre |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
| 2 |
|
mulge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) → 0 ≤ ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 3 |
1 2
|
sylanr1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) ∧ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) → 0 ≤ ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 4 |
3
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) ) → ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) → 0 ≤ ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 5 |
4
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ ( 0 ≤ 𝐴 ∧ 𝑥 ∈ ℋ ) ) → ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) → 0 ≤ ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 6 |
5
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ 0 ≤ 𝐴 ) ∧ 𝑥 ∈ ℋ ) → ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) → 0 ≤ ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 7 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 8 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
| 9 |
7 8
|
anim12i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ) |
| 10 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 11 |
10
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 13 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℂ ) |
| 14 |
|
ffvelcdm |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 15 |
14
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) |
| 17 |
|
ax-his3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 18 |
13 15 16 17
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 19 |
12 18
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 20 |
9 19
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 21 |
20
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( 0 ≤ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 22 |
21
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ 0 ≤ 𝐴 ) ∧ 𝑥 ∈ ℋ ) → ( 0 ≤ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( 𝐴 · ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 23 |
6 22
|
sylibrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ 0 ≤ 𝐴 ) ∧ 𝑥 ∈ ℋ ) → ( 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) → 0 ≤ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 24 |
23
|
ralimdva |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ 0 ≤ 𝐴 ) → ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 25 |
24
|
expimpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( ( 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 26 |
|
leoppos |
⊢ ( 𝑇 ∈ HrmOp → ( 0hop ≤op 𝑇 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( 0hop ≤op 𝑇 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 28 |
27
|
anbi2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( ( 0 ≤ 𝐴 ∧ 0hop ≤op 𝑇 ) ↔ ( 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 29 |
|
hmopm |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) |
| 30 |
|
leoppos |
⊢ ( ( 𝐴 ·op 𝑇 ) ∈ HrmOp → ( 0hop ≤op ( 𝐴 ·op 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( 0hop ≤op ( 𝐴 ·op 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 32 |
25 28 31
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( ( 0 ≤ 𝐴 ∧ 0hop ≤op 𝑇 ) → 0hop ≤op ( 𝐴 ·op 𝑇 ) ) ) |
| 33 |
32
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ ( 0 ≤ 𝐴 ∧ 0hop ≤op 𝑇 ) ) → 0hop ≤op ( 𝐴 ·op 𝑇 ) ) |