Metamath Proof Explorer


Theorem leopmuli

Description: The scalar product of a nonnegative real and a positive operator is a positive operator. Exercise 1(ii) of Retherford p. 49. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leopmuli ATHrmOp0A0hopopT0hopopA·opT

Proof

Step Hyp Ref Expression
1 hmopre THrmOpxTxihx
2 mulge0 A0ATxihx0Txihx0ATxihx
3 1 2 sylanr1 A0ATHrmOpx0Txihx0ATxihx
4 3 expr A0ATHrmOpx0Txihx0ATxihx
5 4 an4s ATHrmOp0Ax0Txihx0ATxihx
6 5 anassrs ATHrmOp0Ax0Txihx0ATxihx
7 recn AA
8 hmopf THrmOpT:
9 7 8 anim12i ATHrmOpAT:
10 homval AT:xA·opTx=ATx
11 10 3expa AT:xA·opTx=ATx
12 11 oveq1d AT:xA·opTxihx=ATxihx
13 simpll AT:xA
14 ffvelcdm T:xTx
15 14 adantll AT:xTx
16 simpr AT:xx
17 ax-his3 ATxxATxihx=ATxihx
18 13 15 16 17 syl3anc AT:xATxihx=ATxihx
19 12 18 eqtrd AT:xA·opTxihx=ATxihx
20 9 19 sylan ATHrmOpxA·opTxihx=ATxihx
21 20 breq2d ATHrmOpx0A·opTxihx0ATxihx
22 21 adantlr ATHrmOp0Ax0A·opTxihx0ATxihx
23 6 22 sylibrd ATHrmOp0Ax0Txihx0A·opTxihx
24 23 ralimdva ATHrmOp0Ax0Txihxx0A·opTxihx
25 24 expimpd ATHrmOp0Ax0Txihxx0A·opTxihx
26 leoppos THrmOp0hopopTx0Txihx
27 26 adantl ATHrmOp0hopopTx0Txihx
28 27 anbi2d ATHrmOp0A0hopopT0Ax0Txihx
29 hmopm ATHrmOpA·opTHrmOp
30 leoppos A·opTHrmOp0hopopA·opTx0A·opTxihx
31 29 30 syl ATHrmOp0hopopA·opTx0A·opTxihx
32 25 28 31 3imtr4d ATHrmOp0A0hopopT0hopopA·opT
33 32 imp ATHrmOp0A0hopopT0hopopA·opT