Metamath Proof Explorer


Theorem homval

Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion homval AT:BA·opTB=ATB

Proof

Step Hyp Ref Expression
1 hommval AT:A·opT=xATx
2 1 fveq1d AT:A·opTB=xATxB
3 fveq2 x=BTx=TB
4 3 oveq2d x=BATx=ATB
5 eqid xATx=xATx
6 ovex ATBV
7 4 5 6 fvmpt BxATxB=ATB
8 2 7 sylan9eq AT:BA·opTB=ATB
9 8 3impa AT:BA·opTB=ATB