Metamath Proof Explorer


Theorem hommval

Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion hommval AT:A·opT=xATx

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 1 elmap TT:
3 oveq1 f=Afgx=Agx
4 3 mpteq2dv f=Axfgx=xAgx
5 fveq1 g=Tgx=Tx
6 5 oveq2d g=TAgx=ATx
7 6 mpteq2dv g=TxAgx=xATx
8 df-homul ·op=f,gxfgx
9 1 mptex xATxV
10 4 7 8 9 ovmpo ATA·opT=xATx
11 2 10 sylan2br AT:A·opT=xATx