Description: The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hmopm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn | |
|
2 | hmopf | |
|
3 | homulcl | |
|
4 | 1 2 3 | syl2an | |
5 | cjre | |
|
6 | hmop | |
|
7 | 6 | 3expb | |
8 | 5 7 | oveqan12d | |
9 | 8 | anassrs | |
10 | 1 2 | anim12i | |
11 | homval | |
|
12 | 11 | 3expa | |
13 | 12 | adantrl | |
14 | 13 | oveq2d | |
15 | simpll | |
|
16 | simprl | |
|
17 | ffvelcdm | |
|
18 | 17 | ad2ant2l | |
19 | his5 | |
|
20 | 15 16 18 19 | syl3anc | |
21 | 14 20 | eqtrd | |
22 | 10 21 | sylan | |
23 | homval | |
|
24 | 23 | 3expa | |
25 | 24 | adantrr | |
26 | 25 | oveq1d | |
27 | ffvelcdm | |
|
28 | 27 | ad2ant2lr | |
29 | simprr | |
|
30 | ax-his3 | |
|
31 | 15 28 29 30 | syl3anc | |
32 | 26 31 | eqtrd | |
33 | 10 32 | sylan | |
34 | 9 22 33 | 3eqtr4d | |
35 | 34 | ralrimivva | |
36 | elhmop | |
|
37 | 4 35 36 | sylanbrc | |