Metamath Proof Explorer


Theorem hmopm

Description: The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopm ATHrmOpA·opTHrmOp

Proof

Step Hyp Ref Expression
1 recn AA
2 hmopf THrmOpT:
3 homulcl AT:A·opT:
4 1 2 3 syl2an ATHrmOpA·opT:
5 cjre AA=A
6 hmop THrmOpxyxihTy=Txihy
7 6 3expb THrmOpxyxihTy=Txihy
8 5 7 oveqan12d ATHrmOpxyAxihTy=ATxihy
9 8 anassrs ATHrmOpxyAxihTy=ATxihy
10 1 2 anim12i ATHrmOpAT:
11 homval AT:yA·opTy=ATy
12 11 3expa AT:yA·opTy=ATy
13 12 adantrl AT:xyA·opTy=ATy
14 13 oveq2d AT:xyxihA·opTy=xihATy
15 simpll AT:xyA
16 simprl AT:xyx
17 ffvelcdm T:yTy
18 17 ad2ant2l AT:xyTy
19 his5 AxTyxihATy=AxihTy
20 15 16 18 19 syl3anc AT:xyxihATy=AxihTy
21 14 20 eqtrd AT:xyxihA·opTy=AxihTy
22 10 21 sylan ATHrmOpxyxihA·opTy=AxihTy
23 homval AT:xA·opTx=ATx
24 23 3expa AT:xA·opTx=ATx
25 24 adantrr AT:xyA·opTx=ATx
26 25 oveq1d AT:xyA·opTxihy=ATxihy
27 ffvelcdm T:xTx
28 27 ad2ant2lr AT:xyTx
29 simprr AT:xyy
30 ax-his3 ATxyATxihy=ATxihy
31 15 28 29 30 syl3anc AT:xyATxihy=ATxihy
32 26 31 eqtrd AT:xyA·opTxihy=ATxihy
33 10 32 sylan ATHrmOpxyA·opTxihy=ATxihy
34 9 22 33 3eqtr4d ATHrmOpxyxihA·opTy=A·opTxihy
35 34 ralrimivva ATHrmOpxyxihA·opTy=A·opTxihy
36 elhmop A·opTHrmOpA·opT:xyxihA·opTy=A·opTxihy
37 4 35 36 sylanbrc ATHrmOpA·opTHrmOp