Metamath Proof Explorer


Theorem elhmop

Description: Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elhmop THrmOpT:xyxihTy=Txihy

Proof

Step Hyp Ref Expression
1 fveq1 t=Tty=Ty
2 1 oveq2d t=Txihty=xihTy
3 fveq1 t=Ttx=Tx
4 3 oveq1d t=Ttxihy=Txihy
5 2 4 eqeq12d t=Txihty=txihyxihTy=Txihy
6 5 2ralbidv t=Txyxihty=txihyxyxihTy=Txihy
7 df-hmop HrmOp=t|xyxihty=txihy
8 6 7 elrab2 THrmOpTxyxihTy=Txihy
9 ax-hilex V
10 9 9 elmap TT:
11 10 anbi1i TxyxihTy=TxihyT:xyxihTy=Txihy
12 8 11 bitri THrmOpT:xyxihTy=Txihy