Metamath Proof Explorer


Theorem leopmul

Description: The scalar product of a positive real and a positive operator is a positive operator. Exercise 1(ii) of Retherford p. 49. (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion leopmul ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 0hopop 𝑇 ↔ 0hopop ( 𝐴 ·op 𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 3simpa ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) )
2 1 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hopop 𝑇 ) → ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) )
3 0re 0 ∈ ℝ
4 ltle ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) )
5 4 3impia ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 )
6 3 5 mp3an1 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 )
7 6 3adant2 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 )
8 7 anim1i ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hopop 𝑇 ) → ( 0 ≤ 𝐴 ∧ 0hopop 𝑇 ) )
9 leopmuli ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ ( 0 ≤ 𝐴 ∧ 0hopop 𝑇 ) ) → 0hopop ( 𝐴 ·op 𝑇 ) )
10 2 8 9 syl2anc ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hopop 𝑇 ) → 0hopop ( 𝐴 ·op 𝑇 ) )
11 gt0ne0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
12 rereccl ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ )
13 11 12 syldan ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ )
14 13 3adant2 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ )
15 hmopm ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( 𝐴 ·op 𝑇 ) ∈ HrmOp )
16 15 3adant3 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 𝐴 ·op 𝑇 ) ∈ HrmOp )
17 recgt0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) )
18 ltle ( ( 0 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 0 < ( 1 / 𝐴 ) → 0 ≤ ( 1 / 𝐴 ) ) )
19 3 13 18 sylancr ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) → 0 ≤ ( 1 / 𝐴 ) ) )
20 17 19 mpd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ ( 1 / 𝐴 ) )
21 20 3adant2 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → 0 ≤ ( 1 / 𝐴 ) )
22 14 16 21 jca31 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) ∧ 0 ≤ ( 1 / 𝐴 ) ) )
23 leopmuli ( ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) ∧ ( 0 ≤ ( 1 / 𝐴 ) ∧ 0hopop ( 𝐴 ·op 𝑇 ) ) ) → 0hopop ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) )
24 23 anassrs ( ( ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) ∧ 0 ≤ ( 1 / 𝐴 ) ) ∧ 0hopop ( 𝐴 ·op 𝑇 ) ) → 0hopop ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) )
25 22 24 sylan ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hopop ( 𝐴 ·op 𝑇 ) ) → 0hopop ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) )
26 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
27 26 adantr ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ )
28 27 11 recid2d ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 )
29 28 oveq1d ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·op 𝑇 ) = ( 1 ·op 𝑇 ) )
30 29 3adant2 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·op 𝑇 ) = ( 1 ·op 𝑇 ) )
31 27 11 reccld ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℂ )
32 31 3adant2 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℂ )
33 26 3ad2ant1 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ )
34 hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )
35 34 3ad2ant2 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → 𝑇 : ℋ ⟶ ℋ )
36 homulass ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·op 𝑇 ) = ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) )
37 32 33 35 36 syl3anc ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·op 𝑇 ) = ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) )
38 homulid2 ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op 𝑇 ) = 𝑇 )
39 34 38 syl ( 𝑇 ∈ HrmOp → ( 1 ·op 𝑇 ) = 𝑇 )
40 39 3ad2ant2 ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 1 ·op 𝑇 ) = 𝑇 )
41 30 37 40 3eqtr3d ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) = 𝑇 )
42 41 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hopop ( 𝐴 ·op 𝑇 ) ) → ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) = 𝑇 )
43 25 42 breqtrd ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hopop ( 𝐴 ·op 𝑇 ) ) → 0hopop 𝑇 )
44 10 43 impbida ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 0hopop 𝑇 ↔ 0hopop ( 𝐴 ·op 𝑇 ) ) )