Step |
Hyp |
Ref |
Expression |
1 |
|
3simpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hop ≤op 𝑇 ) → ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ) |
3 |
|
0re |
⊢ 0 ∈ ℝ |
4 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
5 |
4
|
3impia |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
6 |
3 5
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
8 |
7
|
anim1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hop ≤op 𝑇 ) → ( 0 ≤ 𝐴 ∧ 0hop ≤op 𝑇 ) ) |
9 |
|
leopmuli |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) ∧ ( 0 ≤ 𝐴 ∧ 0hop ≤op 𝑇 ) ) → 0hop ≤op ( 𝐴 ·op 𝑇 ) ) |
10 |
2 8 9
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hop ≤op 𝑇 ) → 0hop ≤op ( 𝐴 ·op 𝑇 ) ) |
11 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
12 |
|
rereccl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
13 |
11 12
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
14 |
13
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
15 |
|
hmopm |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ) → ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) |
17 |
|
recgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
18 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 0 < ( 1 / 𝐴 ) → 0 ≤ ( 1 / 𝐴 ) ) ) |
19 |
3 13 18
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) → 0 ≤ ( 1 / 𝐴 ) ) ) |
20 |
17 19
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ ( 1 / 𝐴 ) ) |
21 |
20
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → 0 ≤ ( 1 / 𝐴 ) ) |
22 |
14 16 21
|
jca31 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) ∧ 0 ≤ ( 1 / 𝐴 ) ) ) |
23 |
|
leopmuli |
⊢ ( ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) ∧ ( 0 ≤ ( 1 / 𝐴 ) ∧ 0hop ≤op ( 𝐴 ·op 𝑇 ) ) ) → 0hop ≤op ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) ) |
24 |
23
|
anassrs |
⊢ ( ( ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ ( 𝐴 ·op 𝑇 ) ∈ HrmOp ) ∧ 0 ≤ ( 1 / 𝐴 ) ) ∧ 0hop ≤op ( 𝐴 ·op 𝑇 ) ) → 0hop ≤op ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) ) |
25 |
22 24
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hop ≤op ( 𝐴 ·op 𝑇 ) ) → 0hop ≤op ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) ) |
26 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
27 |
26
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
28 |
27 11
|
recid2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
29 |
28
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·op 𝑇 ) = ( 1 ·op 𝑇 ) ) |
30 |
29
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·op 𝑇 ) = ( 1 ·op 𝑇 ) ) |
31 |
27 11
|
reccld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
32 |
31
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
33 |
26
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
34 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
35 |
34
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → 𝑇 : ℋ ⟶ ℋ ) |
36 |
|
homulass |
⊢ ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·op 𝑇 ) = ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) ) |
37 |
32 33 35 36
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) ·op 𝑇 ) = ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) ) |
38 |
|
homulid2 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op 𝑇 ) = 𝑇 ) |
39 |
34 38
|
syl |
⊢ ( 𝑇 ∈ HrmOp → ( 1 ·op 𝑇 ) = 𝑇 ) |
40 |
39
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 1 ·op 𝑇 ) = 𝑇 ) |
41 |
30 37 40
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) = 𝑇 ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hop ≤op ( 𝐴 ·op 𝑇 ) ) → ( ( 1 / 𝐴 ) ·op ( 𝐴 ·op 𝑇 ) ) = 𝑇 ) |
43 |
25 42
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) ∧ 0hop ≤op ( 𝐴 ·op 𝑇 ) ) → 0hop ≤op 𝑇 ) |
44 |
10 43
|
impbida |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴 ) → ( 0hop ≤op 𝑇 ↔ 0hop ≤op ( 𝐴 ·op 𝑇 ) ) ) |