| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3simpa |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( A e. RR /\ T e. HrmOp ) ) |
| 2 |
1
|
adantr |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op T ) -> ( A e. RR /\ T e. HrmOp ) ) |
| 3 |
|
0re |
|- 0 e. RR |
| 4 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
| 5 |
4
|
3impia |
|- ( ( 0 e. RR /\ A e. RR /\ 0 < A ) -> 0 <_ A ) |
| 6 |
3 5
|
mp3an1 |
|- ( ( A e. RR /\ 0 < A ) -> 0 <_ A ) |
| 7 |
6
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> 0 <_ A ) |
| 8 |
7
|
anim1i |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op T ) -> ( 0 <_ A /\ 0hop <_op T ) ) |
| 9 |
|
leopmuli |
|- ( ( ( A e. RR /\ T e. HrmOp ) /\ ( 0 <_ A /\ 0hop <_op T ) ) -> 0hop <_op ( A .op T ) ) |
| 10 |
2 8 9
|
syl2anc |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op T ) -> 0hop <_op ( A .op T ) ) |
| 11 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
| 12 |
|
rereccl |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
| 13 |
11 12
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 14 |
13
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 15 |
|
hmopm |
|- ( ( A e. RR /\ T e. HrmOp ) -> ( A .op T ) e. HrmOp ) |
| 16 |
15
|
3adant3 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( A .op T ) e. HrmOp ) |
| 17 |
|
recgt0 |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
| 18 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / A ) e. RR ) -> ( 0 < ( 1 / A ) -> 0 <_ ( 1 / A ) ) ) |
| 19 |
3 13 18
|
sylancr |
|- ( ( A e. RR /\ 0 < A ) -> ( 0 < ( 1 / A ) -> 0 <_ ( 1 / A ) ) ) |
| 20 |
17 19
|
mpd |
|- ( ( A e. RR /\ 0 < A ) -> 0 <_ ( 1 / A ) ) |
| 21 |
20
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> 0 <_ ( 1 / A ) ) |
| 22 |
14 16 21
|
jca31 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( ( ( 1 / A ) e. RR /\ ( A .op T ) e. HrmOp ) /\ 0 <_ ( 1 / A ) ) ) |
| 23 |
|
leopmuli |
|- ( ( ( ( 1 / A ) e. RR /\ ( A .op T ) e. HrmOp ) /\ ( 0 <_ ( 1 / A ) /\ 0hop <_op ( A .op T ) ) ) -> 0hop <_op ( ( 1 / A ) .op ( A .op T ) ) ) |
| 24 |
23
|
anassrs |
|- ( ( ( ( ( 1 / A ) e. RR /\ ( A .op T ) e. HrmOp ) /\ 0 <_ ( 1 / A ) ) /\ 0hop <_op ( A .op T ) ) -> 0hop <_op ( ( 1 / A ) .op ( A .op T ) ) ) |
| 25 |
22 24
|
sylan |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op ( A .op T ) ) -> 0hop <_op ( ( 1 / A ) .op ( A .op T ) ) ) |
| 26 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 27 |
26
|
adantr |
|- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
| 28 |
27 11
|
recid2d |
|- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) x. A ) = 1 ) |
| 29 |
28
|
oveq1d |
|- ( ( A e. RR /\ 0 < A ) -> ( ( ( 1 / A ) x. A ) .op T ) = ( 1 .op T ) ) |
| 30 |
29
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( ( ( 1 / A ) x. A ) .op T ) = ( 1 .op T ) ) |
| 31 |
27 11
|
reccld |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. CC ) |
| 32 |
31
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( 1 / A ) e. CC ) |
| 33 |
26
|
3ad2ant1 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> A e. CC ) |
| 34 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
| 35 |
34
|
3ad2ant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> T : ~H --> ~H ) |
| 36 |
|
homulass |
|- ( ( ( 1 / A ) e. CC /\ A e. CC /\ T : ~H --> ~H ) -> ( ( ( 1 / A ) x. A ) .op T ) = ( ( 1 / A ) .op ( A .op T ) ) ) |
| 37 |
32 33 35 36
|
syl3anc |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( ( ( 1 / A ) x. A ) .op T ) = ( ( 1 / A ) .op ( A .op T ) ) ) |
| 38 |
|
homullid |
|- ( T : ~H --> ~H -> ( 1 .op T ) = T ) |
| 39 |
34 38
|
syl |
|- ( T e. HrmOp -> ( 1 .op T ) = T ) |
| 40 |
39
|
3ad2ant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( 1 .op T ) = T ) |
| 41 |
30 37 40
|
3eqtr3d |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( ( 1 / A ) .op ( A .op T ) ) = T ) |
| 42 |
41
|
adantr |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op ( A .op T ) ) -> ( ( 1 / A ) .op ( A .op T ) ) = T ) |
| 43 |
25 42
|
breqtrd |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op ( A .op T ) ) -> 0hop <_op T ) |
| 44 |
10 43
|
impbida |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( 0hop <_op T <-> 0hop <_op ( A .op T ) ) ) |