Step |
Hyp |
Ref |
Expression |
1 |
|
3simpa |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( A e. RR /\ T e. HrmOp ) ) |
2 |
1
|
adantr |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op T ) -> ( A e. RR /\ T e. HrmOp ) ) |
3 |
|
0re |
|- 0 e. RR |
4 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
5 |
4
|
3impia |
|- ( ( 0 e. RR /\ A e. RR /\ 0 < A ) -> 0 <_ A ) |
6 |
3 5
|
mp3an1 |
|- ( ( A e. RR /\ 0 < A ) -> 0 <_ A ) |
7 |
6
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> 0 <_ A ) |
8 |
7
|
anim1i |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op T ) -> ( 0 <_ A /\ 0hop <_op T ) ) |
9 |
|
leopmuli |
|- ( ( ( A e. RR /\ T e. HrmOp ) /\ ( 0 <_ A /\ 0hop <_op T ) ) -> 0hop <_op ( A .op T ) ) |
10 |
2 8 9
|
syl2anc |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op T ) -> 0hop <_op ( A .op T ) ) |
11 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
12 |
|
rereccl |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
13 |
11 12
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
14 |
13
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( 1 / A ) e. RR ) |
15 |
|
hmopm |
|- ( ( A e. RR /\ T e. HrmOp ) -> ( A .op T ) e. HrmOp ) |
16 |
15
|
3adant3 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( A .op T ) e. HrmOp ) |
17 |
|
recgt0 |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
18 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / A ) e. RR ) -> ( 0 < ( 1 / A ) -> 0 <_ ( 1 / A ) ) ) |
19 |
3 13 18
|
sylancr |
|- ( ( A e. RR /\ 0 < A ) -> ( 0 < ( 1 / A ) -> 0 <_ ( 1 / A ) ) ) |
20 |
17 19
|
mpd |
|- ( ( A e. RR /\ 0 < A ) -> 0 <_ ( 1 / A ) ) |
21 |
20
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> 0 <_ ( 1 / A ) ) |
22 |
14 16 21
|
jca31 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( ( ( 1 / A ) e. RR /\ ( A .op T ) e. HrmOp ) /\ 0 <_ ( 1 / A ) ) ) |
23 |
|
leopmuli |
|- ( ( ( ( 1 / A ) e. RR /\ ( A .op T ) e. HrmOp ) /\ ( 0 <_ ( 1 / A ) /\ 0hop <_op ( A .op T ) ) ) -> 0hop <_op ( ( 1 / A ) .op ( A .op T ) ) ) |
24 |
23
|
anassrs |
|- ( ( ( ( ( 1 / A ) e. RR /\ ( A .op T ) e. HrmOp ) /\ 0 <_ ( 1 / A ) ) /\ 0hop <_op ( A .op T ) ) -> 0hop <_op ( ( 1 / A ) .op ( A .op T ) ) ) |
25 |
22 24
|
sylan |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op ( A .op T ) ) -> 0hop <_op ( ( 1 / A ) .op ( A .op T ) ) ) |
26 |
|
recn |
|- ( A e. RR -> A e. CC ) |
27 |
26
|
adantr |
|- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
28 |
27 11
|
recid2d |
|- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) x. A ) = 1 ) |
29 |
28
|
oveq1d |
|- ( ( A e. RR /\ 0 < A ) -> ( ( ( 1 / A ) x. A ) .op T ) = ( 1 .op T ) ) |
30 |
29
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( ( ( 1 / A ) x. A ) .op T ) = ( 1 .op T ) ) |
31 |
27 11
|
reccld |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. CC ) |
32 |
31
|
3adant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( 1 / A ) e. CC ) |
33 |
26
|
3ad2ant1 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> A e. CC ) |
34 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
35 |
34
|
3ad2ant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> T : ~H --> ~H ) |
36 |
|
homulass |
|- ( ( ( 1 / A ) e. CC /\ A e. CC /\ T : ~H --> ~H ) -> ( ( ( 1 / A ) x. A ) .op T ) = ( ( 1 / A ) .op ( A .op T ) ) ) |
37 |
32 33 35 36
|
syl3anc |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( ( ( 1 / A ) x. A ) .op T ) = ( ( 1 / A ) .op ( A .op T ) ) ) |
38 |
|
homulid2 |
|- ( T : ~H --> ~H -> ( 1 .op T ) = T ) |
39 |
34 38
|
syl |
|- ( T e. HrmOp -> ( 1 .op T ) = T ) |
40 |
39
|
3ad2ant2 |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( 1 .op T ) = T ) |
41 |
30 37 40
|
3eqtr3d |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( ( 1 / A ) .op ( A .op T ) ) = T ) |
42 |
41
|
adantr |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op ( A .op T ) ) -> ( ( 1 / A ) .op ( A .op T ) ) = T ) |
43 |
25 42
|
breqtrd |
|- ( ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) /\ 0hop <_op ( A .op T ) ) -> 0hop <_op T ) |
44 |
10 43
|
impbida |
|- ( ( A e. RR /\ T e. HrmOp /\ 0 < A ) -> ( 0hop <_op T <-> 0hop <_op ( A .op T ) ) ) |