Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) -> A e. RR ) |
2 |
|
hmopd |
|- ( ( U e. HrmOp /\ T e. HrmOp ) -> ( U -op T ) e. HrmOp ) |
3 |
2
|
ancoms |
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( U -op T ) e. HrmOp ) |
4 |
3
|
3adant1 |
|- ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) -> ( U -op T ) e. HrmOp ) |
5 |
|
leopmuli |
|- ( ( ( A e. RR /\ ( U -op T ) e. HrmOp ) /\ ( 0 <_ A /\ 0hop <_op ( U -op T ) ) ) -> 0hop <_op ( A .op ( U -op T ) ) ) |
6 |
5
|
exp32 |
|- ( ( A e. RR /\ ( U -op T ) e. HrmOp ) -> ( 0 <_ A -> ( 0hop <_op ( U -op T ) -> 0hop <_op ( A .op ( U -op T ) ) ) ) ) |
7 |
1 4 6
|
syl2anc |
|- ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) -> ( 0 <_ A -> ( 0hop <_op ( U -op T ) -> 0hop <_op ( A .op ( U -op T ) ) ) ) ) |
8 |
7
|
imp |
|- ( ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) /\ 0 <_ A ) -> ( 0hop <_op ( U -op T ) -> 0hop <_op ( A .op ( U -op T ) ) ) ) |
9 |
|
leop3 |
|- ( ( T e. HrmOp /\ U e. HrmOp ) -> ( T <_op U <-> 0hop <_op ( U -op T ) ) ) |
10 |
9
|
3adant1 |
|- ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) -> ( T <_op U <-> 0hop <_op ( U -op T ) ) ) |
11 |
10
|
adantr |
|- ( ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) /\ 0 <_ A ) -> ( T <_op U <-> 0hop <_op ( U -op T ) ) ) |
12 |
|
hmopm |
|- ( ( A e. RR /\ T e. HrmOp ) -> ( A .op T ) e. HrmOp ) |
13 |
|
hmopm |
|- ( ( A e. RR /\ U e. HrmOp ) -> ( A .op U ) e. HrmOp ) |
14 |
|
leop3 |
|- ( ( ( A .op T ) e. HrmOp /\ ( A .op U ) e. HrmOp ) -> ( ( A .op T ) <_op ( A .op U ) <-> 0hop <_op ( ( A .op U ) -op ( A .op T ) ) ) ) |
15 |
12 13 14
|
syl2an |
|- ( ( ( A e. RR /\ T e. HrmOp ) /\ ( A e. RR /\ U e. HrmOp ) ) -> ( ( A .op T ) <_op ( A .op U ) <-> 0hop <_op ( ( A .op U ) -op ( A .op T ) ) ) ) |
16 |
15
|
3impdi |
|- ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) -> ( ( A .op T ) <_op ( A .op U ) <-> 0hop <_op ( ( A .op U ) -op ( A .op T ) ) ) ) |
17 |
|
recn |
|- ( A e. RR -> A e. CC ) |
18 |
|
hmopf |
|- ( U e. HrmOp -> U : ~H --> ~H ) |
19 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
20 |
|
hosubdi |
|- ( ( A e. CC /\ U : ~H --> ~H /\ T : ~H --> ~H ) -> ( A .op ( U -op T ) ) = ( ( A .op U ) -op ( A .op T ) ) ) |
21 |
17 18 19 20
|
syl3an |
|- ( ( A e. RR /\ U e. HrmOp /\ T e. HrmOp ) -> ( A .op ( U -op T ) ) = ( ( A .op U ) -op ( A .op T ) ) ) |
22 |
21
|
3com23 |
|- ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) -> ( A .op ( U -op T ) ) = ( ( A .op U ) -op ( A .op T ) ) ) |
23 |
22
|
breq2d |
|- ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) -> ( 0hop <_op ( A .op ( U -op T ) ) <-> 0hop <_op ( ( A .op U ) -op ( A .op T ) ) ) ) |
24 |
16 23
|
bitr4d |
|- ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) -> ( ( A .op T ) <_op ( A .op U ) <-> 0hop <_op ( A .op ( U -op T ) ) ) ) |
25 |
24
|
adantr |
|- ( ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) /\ 0 <_ A ) -> ( ( A .op T ) <_op ( A .op U ) <-> 0hop <_op ( A .op ( U -op T ) ) ) ) |
26 |
8 11 25
|
3imtr4d |
|- ( ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) /\ 0 <_ A ) -> ( T <_op U -> ( A .op T ) <_op ( A .op U ) ) ) |
27 |
26
|
impr |
|- ( ( ( A e. RR /\ T e. HrmOp /\ U e. HrmOp ) /\ ( 0 <_ A /\ T <_op U ) ) -> ( A .op T ) <_op ( A .op U ) ) |