Metamath Proof Explorer


Theorem 0hmop

Description: The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion 0hmop 0hopHrmOp

Proof

Step Hyp Ref Expression
1 ho0f 0hop:
2 ho0val y0hopy=0
3 2 oveq2d yxih0hopy=xih0
4 hi02 xxih0=0
5 3 4 sylan9eqr xyxih0hopy=0
6 ho0val x0hopx=0
7 6 oveq1d x0hopxihy=0ihy
8 hi01 y0ihy=0
9 7 8 sylan9eq xy0hopxihy=0
10 5 9 eqtr4d xyxih0hopy=0hopxihy
11 10 rgen2 xyxih0hopy=0hopxihy
12 elhmop 0hopHrmOp0hop:xyxih0hopy=0hopxihy
13 1 11 12 mpbir2an 0hopHrmOp