Description: The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | 0hmop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ho0f | |
|
2 | ho0val | |
|
3 | 2 | oveq2d | |
4 | hi02 | |
|
5 | 3 4 | sylan9eqr | |
6 | ho0val | |
|
7 | 6 | oveq1d | |
8 | hi01 | |
|
9 | 7 8 | sylan9eq | |
10 | 5 9 | eqtr4d | |
11 | 10 | rgen2 | |
12 | elhmop | |
|
13 | 1 11 12 | mpbir2an | |