| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idressubmefmnd.g |
|- G = ( EndoFMnd ` A ) |
| 2 |
|
idresefmnd.e |
|- E = ( G |`s { ( _I |` A ) } ) |
| 3 |
1
|
idressubmefmnd |
|- ( A e. V -> { ( _I |` A ) } e. ( SubMnd ` G ) ) |
| 4 |
1
|
efmndmnd |
|- ( A e. V -> G e. Mnd ) |
| 5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 7 |
|
eqid |
|- ( G |`s { ( _I |` A ) } ) = ( G |`s { ( _I |` A ) } ) |
| 8 |
5 6 7
|
issubm2 |
|- ( G e. Mnd -> ( { ( _I |` A ) } e. ( SubMnd ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) ) |
| 9 |
4 8
|
syl |
|- ( A e. V -> ( { ( _I |` A ) } e. ( SubMnd ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) ) |
| 10 |
|
snex |
|- { ( _I |` A ) } e. _V |
| 11 |
2 5
|
ressbas |
|- ( { ( _I |` A ) } e. _V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
| 12 |
10 11
|
mp1i |
|- ( A e. V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
| 13 |
|
inss2 |
|- ( { ( _I |` A ) } i^i ( Base ` G ) ) C_ ( Base ` G ) |
| 14 |
12 13
|
eqsstrrdi |
|- ( A e. V -> ( Base ` E ) C_ ( Base ` G ) ) |
| 15 |
2
|
eqcomi |
|- ( G |`s { ( _I |` A ) } ) = E |
| 16 |
15
|
eleq1i |
|- ( ( G |`s { ( _I |` A ) } ) e. Mnd <-> E e. Mnd ) |
| 17 |
16
|
biimpi |
|- ( ( G |`s { ( _I |` A ) } ) e. Mnd -> E e. Mnd ) |
| 18 |
17
|
3ad2ant3 |
|- ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) -> E e. Mnd ) |
| 19 |
14 18
|
anim12ci |
|- ( ( A e. V /\ ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) |
| 20 |
19
|
ex |
|- ( A e. V -> ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
| 21 |
9 20
|
sylbid |
|- ( A e. V -> ( { ( _I |` A ) } e. ( SubMnd ` G ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
| 22 |
3 21
|
mpd |
|- ( A e. V -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) |