Step |
Hyp |
Ref |
Expression |
1 |
|
idressubmefmnd.g |
|- G = ( EndoFMnd ` A ) |
2 |
|
idresefmnd.e |
|- E = ( G |`s { ( _I |` A ) } ) |
3 |
1
|
idressubmefmnd |
|- ( A e. V -> { ( _I |` A ) } e. ( SubMnd ` G ) ) |
4 |
1
|
efmndmnd |
|- ( A e. V -> G e. Mnd ) |
5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
|
eqid |
|- ( G |`s { ( _I |` A ) } ) = ( G |`s { ( _I |` A ) } ) |
8 |
5 6 7
|
issubm2 |
|- ( G e. Mnd -> ( { ( _I |` A ) } e. ( SubMnd ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) ) |
9 |
4 8
|
syl |
|- ( A e. V -> ( { ( _I |` A ) } e. ( SubMnd ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) ) |
10 |
|
snex |
|- { ( _I |` A ) } e. _V |
11 |
2 5
|
ressbas |
|- ( { ( _I |` A ) } e. _V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
12 |
10 11
|
mp1i |
|- ( A e. V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
13 |
|
inss2 |
|- ( { ( _I |` A ) } i^i ( Base ` G ) ) C_ ( Base ` G ) |
14 |
12 13
|
eqsstrrdi |
|- ( A e. V -> ( Base ` E ) C_ ( Base ` G ) ) |
15 |
2
|
eqcomi |
|- ( G |`s { ( _I |` A ) } ) = E |
16 |
15
|
eleq1i |
|- ( ( G |`s { ( _I |` A ) } ) e. Mnd <-> E e. Mnd ) |
17 |
16
|
biimpi |
|- ( ( G |`s { ( _I |` A ) } ) e. Mnd -> E e. Mnd ) |
18 |
17
|
3ad2ant3 |
|- ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) -> E e. Mnd ) |
19 |
14 18
|
anim12ci |
|- ( ( A e. V /\ ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) |
20 |
19
|
ex |
|- ( A e. V -> ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
21 |
9 20
|
sylbid |
|- ( A e. V -> ( { ( _I |` A ) } e. ( SubMnd ` G ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
22 |
3 21
|
mpd |
|- ( A e. V -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) |