Metamath Proof Explorer


Theorem impsingle-step21

Description: Derivation of impsingle-step21 from ax-mp and impsingle . It is used as a lemma in the proof of imim1 from impsingle . It is Step 21 in Lukasiewicz, where it appears as 'CCCCprqqCCqrCpr' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step21
|- ( ( ( ( ph -> ps ) -> ch ) -> ch ) -> ( ( ch -> ps ) -> ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 impsingle-step15
 |-  ( ( ( ch -> ( ph -> ps ) ) -> ( ph -> ps ) ) -> ( ( ch -> ps ) -> ( ph -> ps ) ) )
2 impsingle-step20
 |-  ( ( ( ( ch -> ( ph -> ps ) ) -> ( ph -> ps ) ) -> ( ( ch -> ps ) -> ( ph -> ps ) ) ) -> ( ( ( ( ph -> ps ) -> ch ) -> ch ) -> ( ( ch -> ps ) -> ( ph -> ps ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( ( ph -> ps ) -> ch ) -> ch ) -> ( ( ch -> ps ) -> ( ph -> ps ) ) )