Metamath Proof Explorer


Theorem impsingle-step22

Description: Derivation of impsingle-step22 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 22 in Lukasiewicz, where it appears as 'Cpp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step22
|- ( ph -> ph )

Proof

Step Hyp Ref Expression
1 impsingle-step4
 |-  ( ( ( th -> mu ) -> th ) -> ( la -> th ) )
2 impsingle-step4
 |-  ( ( ( ph -> ps ) -> ph ) -> ( ph -> ph ) )
3 impsingle-step4
 |-  ( ( ( ph -> ph ) -> ph ) -> ( ( ph -> ps ) -> ph ) )
4 impsingle
 |-  ( ( ( ( ph -> ph ) -> ph ) -> ( ( ph -> ps ) -> ph ) ) -> ( ( ( ( ph -> ps ) -> ph ) -> ( ph -> ph ) ) -> ( ( ( ( th -> mu ) -> th ) -> ( la -> th ) ) -> ( ph -> ph ) ) ) )
5 3 4 ax-mp
 |-  ( ( ( ( ph -> ps ) -> ph ) -> ( ph -> ph ) ) -> ( ( ( ( th -> mu ) -> th ) -> ( la -> th ) ) -> ( ph -> ph ) ) )
6 2 5 ax-mp
 |-  ( ( ( ( th -> mu ) -> th ) -> ( la -> th ) ) -> ( ph -> ph ) )
7 1 6 ax-mp
 |-  ( ph -> ph )