Metamath Proof Explorer


Theorem impsingle-step22

Description: Derivation of impsingle-step22 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 22 in Lukasiewicz, where it appears as 'Cpp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step22 ( 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 impsingle-step4 ( ( ( 𝜃𝜇 ) → 𝜃 ) → ( 𝜆𝜃 ) )
2 impsingle-step4 ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜑𝜑 ) )
3 impsingle-step4 ( ( ( 𝜑𝜑 ) → 𝜑 ) → ( ( 𝜑𝜓 ) → 𝜑 ) )
4 impsingle ( ( ( ( 𝜑𝜑 ) → 𝜑 ) → ( ( 𝜑𝜓 ) → 𝜑 ) ) → ( ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜑𝜑 ) ) → ( ( ( ( 𝜃𝜇 ) → 𝜃 ) → ( 𝜆𝜃 ) ) → ( 𝜑𝜑 ) ) ) )
5 3 4 ax-mp ( ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜑𝜑 ) ) → ( ( ( ( 𝜃𝜇 ) → 𝜃 ) → ( 𝜆𝜃 ) ) → ( 𝜑𝜑 ) ) )
6 2 5 ax-mp ( ( ( ( 𝜃𝜇 ) → 𝜃 ) → ( 𝜆𝜃 ) ) → ( 𝜑𝜑 ) )
7 1 6 ax-mp ( 𝜑𝜑 )