Step |
Hyp |
Ref |
Expression |
1 |
|
impsingle-step22 |
⊢ ( ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) |
2 |
|
impsingle-step20 |
⊢ ( ( ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) → ( ( ( 𝜓 → 𝜃 ) → ( 𝜑 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ( ( 𝜓 → 𝜃 ) → ( 𝜑 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) |
4 |
|
impsingle-step8 |
⊢ ( ( ( ( 𝜓 → 𝜃 ) → ( 𝜑 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) → ( ( 𝜑 → 𝜒 ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ( 𝜑 → 𝜒 ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) |
6 |
|
impsingle-step15 |
⊢ ( ( ( 𝜑 → 𝜒 ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜑 → 𝜒 ) → 𝜓 ) → 𝜓 ) ) |