Metamath Proof Explorer


Theorem impsingle-step25

Description: Derivation of impsingle-step25 from ax-mp and impsingle . It is used as a lemma in the proof of imim1 from impsingle . It is Step 25 in Lukasiewicz, where it appears as 'CCpqCCCprqq' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step25 φ ψ φ χ ψ ψ

Proof

Step Hyp Ref Expression
1 impsingle-step22 φ χ ψ ψ φ χ ψ ψ
2 impsingle-step20 φ χ ψ ψ φ χ ψ ψ ψ θ φ χ φ χ ψ ψ
3 1 2 ax-mp ψ θ φ χ φ χ ψ ψ
4 impsingle-step8 ψ θ φ χ φ χ ψ ψ φ χ φ χ ψ ψ
5 3 4 ax-mp φ χ φ χ ψ ψ
6 impsingle-step15 φ χ φ χ ψ ψ φ ψ φ χ ψ ψ
7 5 6 ax-mp φ ψ φ χ ψ ψ