Metamath Proof Explorer


Theorem impsingle-step25

Description: Derivation of impsingle-step25 from ax-mp and impsingle . It is used as a lemma in the proof of imim1 from impsingle . It is Step 25 in Lukasiewicz, where it appears as 'CCpqCCCprqq' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step25
|- ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) )

Proof

Step Hyp Ref Expression
1 impsingle-step22
 |-  ( ( ( ( ph -> ch ) -> ps ) -> ps ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) )
2 impsingle-step20
 |-  ( ( ( ( ( ph -> ch ) -> ps ) -> ps ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) -> ( ( ( ps -> th ) -> ( ph -> ch ) ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) )
3 1 2 ax-mp
 |-  ( ( ( ps -> th ) -> ( ph -> ch ) ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) )
4 impsingle-step8
 |-  ( ( ( ( ps -> th ) -> ( ph -> ch ) ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) -> ( ( ph -> ch ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) )
5 3 4 ax-mp
 |-  ( ( ph -> ch ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) )
6 impsingle-step15
 |-  ( ( ( ph -> ch ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) -> ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) )
7 5 6 ax-mp
 |-  ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) )