Metamath Proof Explorer


Theorem impsingle-imim1

Description: Derivation of impsingle-imim1 ( imim1 ) from ax-mp and impsingle . It is step 29 in Lukasiewicz. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-imim1
|- ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) )

Proof

Step Hyp Ref Expression
1 impsingle-step21
 |-  ( ( ( ( ph -> ch ) -> ps ) -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) )
2 impsingle-step25
 |-  ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) )
3 impsingle-step25
 |-  ( ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) -> ( ( ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) )
4 2 3 ax-mp
 |-  ( ( ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) )
5 impsingle-step21
 |-  ( ( ( ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) ) -> ( ( ( ( ( ph -> ch ) -> ps ) -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) ) )
6 4 5 ax-mp
 |-  ( ( ( ( ( ph -> ch ) -> ps ) -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) )
7 1 6 ax-mp
 |-  ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) )