Metamath Proof Explorer


Theorem impsingle-imim1

Description: Derivation of impsingle-imim1 ( imim1 ) from ax-mp and impsingle . It is step 29 in Lukasiewicz. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-imim1 ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 impsingle-step21 ( ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )
2 impsingle-step25 ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) )
3 impsingle-step25 ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) ) → ( ( ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) ) )
4 2 3 ax-mp ( ( ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) )
5 impsingle-step21 ( ( ( ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) ) → ( ( ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) ) )
6 4 5 ax-mp ( ( ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) ) )
7 1 6 ax-mp ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )