Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtcval |
|- ( A e. CC -> ( sqrt ` A ) = ( ( sqrt ` ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) ) + ( _i x. ( if ( ( Im ` A ) < 0 , -u 1 , 1 ) x. ( sqrt ` ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) ) ) ) ) |
2 |
1
|
fveq2d |
|- ( A e. CC -> ( Im ` ( sqrt ` A ) ) = ( Im ` ( ( sqrt ` ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) ) + ( _i x. ( if ( ( Im ` A ) < 0 , -u 1 , 1 ) x. ( sqrt ` ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) ) ) ) ) ) |
3 |
|
sqrtcvallem5 |
|- ( A e. CC -> ( sqrt ` ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) ) e. RR ) |
4 |
|
neg1rr |
|- -u 1 e. RR |
5 |
|
1re |
|- 1 e. RR |
6 |
4 5
|
ifcli |
|- if ( ( Im ` A ) < 0 , -u 1 , 1 ) e. RR |
7 |
6
|
a1i |
|- ( A e. CC -> if ( ( Im ` A ) < 0 , -u 1 , 1 ) e. RR ) |
8 |
|
sqrtcvallem3 |
|- ( A e. CC -> ( sqrt ` ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) e. RR ) |
9 |
7 8
|
remulcld |
|- ( A e. CC -> ( if ( ( Im ` A ) < 0 , -u 1 , 1 ) x. ( sqrt ` ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) ) e. RR ) |
10 |
3 9
|
crimd |
|- ( A e. CC -> ( Im ` ( ( sqrt ` ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) ) + ( _i x. ( if ( ( Im ` A ) < 0 , -u 1 , 1 ) x. ( sqrt ` ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) ) ) ) ) = ( if ( ( Im ` A ) < 0 , -u 1 , 1 ) x. ( sqrt ` ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) ) ) |
11 |
2 10
|
eqtrd |
|- ( A e. CC -> ( Im ` ( sqrt ` A ) ) = ( if ( ( Im ` A ) < 0 , -u 1 , 1 ) x. ( sqrt ` ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) ) ) |