Metamath Proof Explorer


Theorem sqrtcvallem3

Description: Equivalent to saying that the absolute value of the imaginary component of the square root of a complex number is a real number. Lemma for sqrtcval , sqrtcval2 , resqrtval , and imsqrtval . (Contributed by RP, 11-May-2024)

Ref Expression
Assertion sqrtcvallem3
|- ( A e. CC -> ( sqrt ` ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) e. RR )

Proof

Step Hyp Ref Expression
1 abscl
 |-  ( A e. CC -> ( abs ` A ) e. RR )
2 recl
 |-  ( A e. CC -> ( Re ` A ) e. RR )
3 1 2 resubcld
 |-  ( A e. CC -> ( ( abs ` A ) - ( Re ` A ) ) e. RR )
4 3 rehalfcld
 |-  ( A e. CC -> ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) e. RR )
5 sqrtcvallem2
 |-  ( A e. CC -> 0 <_ ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) )
6 4 5 resqrtcld
 |-  ( A e. CC -> ( sqrt ` ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) e. RR )