| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abscl |  |-  ( A e. CC -> ( abs ` A ) e. RR ) | 
						
							| 2 |  | recl |  |-  ( A e. CC -> ( Re ` A ) e. RR ) | 
						
							| 3 | 1 2 | readdcld |  |-  ( A e. CC -> ( ( abs ` A ) + ( Re ` A ) ) e. RR ) | 
						
							| 4 |  | 2rp |  |-  2 e. RR+ | 
						
							| 5 | 4 | a1i |  |-  ( A e. CC -> 2 e. RR+ ) | 
						
							| 6 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 7 | 6 | releabsd |  |-  ( A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) | 
						
							| 8 | 6 | abscld |  |-  ( A e. CC -> ( abs ` -u A ) e. RR ) | 
						
							| 9 | 6 | recld |  |-  ( A e. CC -> ( Re ` -u A ) e. RR ) | 
						
							| 10 | 8 9 | subge0d |  |-  ( A e. CC -> ( 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) <-> ( Re ` -u A ) <_ ( abs ` -u A ) ) ) | 
						
							| 11 | 7 10 | mpbird |  |-  ( A e. CC -> 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) ) | 
						
							| 12 |  | absneg |  |-  ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) | 
						
							| 13 |  | reneg |  |-  ( A e. CC -> ( Re ` -u A ) = -u ( Re ` A ) ) | 
						
							| 14 | 12 13 | oveq12d |  |-  ( A e. CC -> ( ( abs ` -u A ) - ( Re ` -u A ) ) = ( ( abs ` A ) - -u ( Re ` A ) ) ) | 
						
							| 15 | 1 | recnd |  |-  ( A e. CC -> ( abs ` A ) e. CC ) | 
						
							| 16 | 2 | recnd |  |-  ( A e. CC -> ( Re ` A ) e. CC ) | 
						
							| 17 | 15 16 | subnegd |  |-  ( A e. CC -> ( ( abs ` A ) - -u ( Re ` A ) ) = ( ( abs ` A ) + ( Re ` A ) ) ) | 
						
							| 18 | 14 17 | eqtrd |  |-  ( A e. CC -> ( ( abs ` -u A ) - ( Re ` -u A ) ) = ( ( abs ` A ) + ( Re ` A ) ) ) | 
						
							| 19 | 11 18 | breqtrd |  |-  ( A e. CC -> 0 <_ ( ( abs ` A ) + ( Re ` A ) ) ) | 
						
							| 20 | 3 5 19 | divge0d |  |-  ( A e. CC -> 0 <_ ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) ) |