Step |
Hyp |
Ref |
Expression |
1 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
2 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
3 |
1 2
|
readdcld |
|- ( A e. CC -> ( ( abs ` A ) + ( Re ` A ) ) e. RR ) |
4 |
|
2rp |
|- 2 e. RR+ |
5 |
4
|
a1i |
|- ( A e. CC -> 2 e. RR+ ) |
6 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
7 |
6
|
releabsd |
|- ( A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) |
8 |
6
|
abscld |
|- ( A e. CC -> ( abs ` -u A ) e. RR ) |
9 |
6
|
recld |
|- ( A e. CC -> ( Re ` -u A ) e. RR ) |
10 |
8 9
|
subge0d |
|- ( A e. CC -> ( 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) <-> ( Re ` -u A ) <_ ( abs ` -u A ) ) ) |
11 |
7 10
|
mpbird |
|- ( A e. CC -> 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
12 |
|
absneg |
|- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |
13 |
|
reneg |
|- ( A e. CC -> ( Re ` -u A ) = -u ( Re ` A ) ) |
14 |
12 13
|
oveq12d |
|- ( A e. CC -> ( ( abs ` -u A ) - ( Re ` -u A ) ) = ( ( abs ` A ) - -u ( Re ` A ) ) ) |
15 |
1
|
recnd |
|- ( A e. CC -> ( abs ` A ) e. CC ) |
16 |
2
|
recnd |
|- ( A e. CC -> ( Re ` A ) e. CC ) |
17 |
15 16
|
subnegd |
|- ( A e. CC -> ( ( abs ` A ) - -u ( Re ` A ) ) = ( ( abs ` A ) + ( Re ` A ) ) ) |
18 |
14 17
|
eqtrd |
|- ( A e. CC -> ( ( abs ` -u A ) - ( Re ` -u A ) ) = ( ( abs ` A ) + ( Re ` A ) ) ) |
19 |
11 18
|
breqtrd |
|- ( A e. CC -> 0 <_ ( ( abs ` A ) + ( Re ` A ) ) ) |
20 |
3 5 19
|
divge0d |
|- ( A e. CC -> 0 <_ ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) ) |