Metamath Proof Explorer


Theorem sqrtcvallem5

Description: Equivalent to saying that the real component of the square root of a complex number is a real number. Lemma for resqrtval and imsqrtval . (Contributed by RP, 11-May-2024)

Ref Expression
Assertion sqrtcvallem5
|- ( A e. CC -> ( sqrt ` ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) ) e. RR )

Proof

Step Hyp Ref Expression
1 abscl
 |-  ( A e. CC -> ( abs ` A ) e. RR )
2 recl
 |-  ( A e. CC -> ( Re ` A ) e. RR )
3 1 2 readdcld
 |-  ( A e. CC -> ( ( abs ` A ) + ( Re ` A ) ) e. RR )
4 3 rehalfcld
 |-  ( A e. CC -> ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) e. RR )
5 sqrtcvallem4
 |-  ( A e. CC -> 0 <_ ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) )
6 4 5 resqrtcld
 |-  ( A e. CC -> ( sqrt ` ( ( ( abs ` A ) + ( Re ` A ) ) / 2 ) ) e. RR )