Metamath Proof Explorer


Theorem sqrtcvallem5

Description: Equivalent to saying that the real component of the square root of a complex number is a real number. Lemma for resqrtval and imsqrtval . (Contributed by RP, 11-May-2024)

Ref Expression
Assertion sqrtcvallem5 ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
2 recl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )
3 1 2 readdcld ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ∈ ℝ )
4 3 rehalfcld ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ∈ ℝ )
5 sqrtcvallem4 ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) )
6 4 5 resqrtcld ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ )