| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqrtcval | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ 𝐴 )  =  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( √ ‘ 𝐴 ) )  =  ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) ) | 
						
							| 3 |  | sqrtcvallem5 | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ∈  ℝ ) | 
						
							| 4 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 5 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 6 | 4 5 | ifcli | ⊢ if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ∈  ℝ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ∈  ℝ ) | 
						
							| 8 |  | sqrtcvallem3 | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ∈  ℝ ) | 
						
							| 9 | 7 8 | remulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ∈  ℝ ) | 
						
							| 10 | 3 9 | crred | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  =  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 11 | 2 10 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( √ ‘ 𝐴 ) )  =  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) |