Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtcval |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( √ ‘ 𝐴 ) ) = ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) |
3 |
|
sqrtcvallem5 |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |
4 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
5 |
|
1re |
⊢ 1 ∈ ℝ |
6 |
4 5
|
ifcli |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℝ |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℝ ) |
8 |
|
sqrtcvallem3 |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |
9 |
7 8
|
remulcld |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ∈ ℝ ) |
10 |
3 9
|
crred |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) = ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
11 |
2 10
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( √ ‘ 𝐴 ) ) = ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |