Description: Equivalent to saying that the absolute value of the imaginary component of the square root of a complex number is a real number. Lemma for sqrtcval , sqrtcval2 , resqrtval , and imsqrtval . (Contributed by RP, 11-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtcvallem3 | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | 1 2 | resubcld | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) | 
| 4 | 3 | rehalfcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ∈ ℝ ) | 
| 5 | sqrtcvallem2 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) | |
| 6 | 4 5 | resqrtcld | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |