Metamath Proof Explorer


Theorem sqrtcvallem3

Description: Equivalent to saying that the absolute value of the imaginary component of the square root of a complex number is a real number. Lemma for sqrtcval , sqrtcval2 , resqrtval , and imsqrtval . (Contributed by RP, 11-May-2024)

Ref Expression
Assertion sqrtcvallem3 ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
2 recl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )
3 1 2 resubcld ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ )
4 3 rehalfcld ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ∈ ℝ )
5 sqrtcvallem2 ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) )
6 4 5 resqrtcld ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ )