Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtcval |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) |
2 |
|
ovif2 |
⊢ ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , ( i · - 1 ) , ( i · 1 ) ) |
3 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
4 |
|
ax-icn |
⊢ i ∈ ℂ |
5 |
4
|
mulm1i |
⊢ ( - 1 · i ) = - i |
6 |
3 4 5
|
mulcomli |
⊢ ( i · - 1 ) = - i |
7 |
4
|
mulid1i |
⊢ ( i · 1 ) = i |
8 |
|
ifeq12 |
⊢ ( ( ( i · - 1 ) = - i ∧ ( i · 1 ) = i ) → if ( ( ℑ ‘ 𝐴 ) < 0 , ( i · - 1 ) , ( i · 1 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) ) |
9 |
6 7 8
|
mp2an |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , ( i · - 1 ) , ( i · 1 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) |
10 |
2 9
|
eqtr2i |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) = ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) |
11 |
10
|
a1i |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) = ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) |
13 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
14 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
15 |
|
1re |
⊢ 1 ∈ ℝ |
16 |
14 15
|
ifcli |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℝ |
17 |
16
|
a1i |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℝ ) |
18 |
17
|
recnd |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℂ ) |
19 |
|
sqrtcvallem3 |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |
20 |
19
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℂ ) |
21 |
13 18 20
|
mulassd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) |
22 |
12 21
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) = ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) |
24 |
1 23
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) |