| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqrtcval | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ 𝐴 )  =  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) | 
						
							| 2 |  | ovif2 | ⊢ ( i  ·  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  ( i  ·  - 1 ) ,  ( i  ·  1 ) ) | 
						
							| 3 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 4 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 5 | 4 | mulm1i | ⊢ ( - 1  ·  i )  =  - i | 
						
							| 6 | 3 4 5 | mulcomli | ⊢ ( i  ·  - 1 )  =  - i | 
						
							| 7 | 4 | mulridi | ⊢ ( i  ·  1 )  =  i | 
						
							| 8 |  | ifeq12 | ⊢ ( ( ( i  ·  - 1 )  =  - i  ∧  ( i  ·  1 )  =  i )  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  ( i  ·  - 1 ) ,  ( i  ·  1 ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - i ,  i ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ if ( ( ℑ ‘ 𝐴 )  <  0 ,  ( i  ·  - 1 ) ,  ( i  ·  1 ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - i ,  i ) | 
						
							| 10 | 2 9 | eqtr2i | ⊢ if ( ( ℑ ‘ 𝐴 )  <  0 ,  - i ,  i )  =  ( i  ·  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - i ,  i )  =  ( i  ·  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - i ,  i )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  =  ( ( i  ·  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) | 
						
							| 13 | 4 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  i  ∈  ℂ ) | 
						
							| 14 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 15 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 16 | 14 15 | ifcli | ⊢ if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ∈  ℝ | 
						
							| 17 | 16 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ∈  ℝ ) | 
						
							| 18 | 17 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ∈  ℂ ) | 
						
							| 19 |  | sqrtcvallem3 | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ∈  ℂ ) | 
						
							| 21 | 13 18 20 | mulassd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  =  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) | 
						
							| 22 | 12 21 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - i ,  i )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  =  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - i ,  i )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) )  =  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) | 
						
							| 24 | 1 23 | eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ 𝐴 )  =  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - i ,  i )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) |