| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrtcval |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) |
| 2 |
|
ovif2 |
⊢ ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , ( i · - 1 ) , ( i · 1 ) ) |
| 3 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 4 |
|
ax-icn |
⊢ i ∈ ℂ |
| 5 |
4
|
mulm1i |
⊢ ( - 1 · i ) = - i |
| 6 |
3 4 5
|
mulcomli |
⊢ ( i · - 1 ) = - i |
| 7 |
4
|
mulridi |
⊢ ( i · 1 ) = i |
| 8 |
|
ifeq12 |
⊢ ( ( ( i · - 1 ) = - i ∧ ( i · 1 ) = i ) → if ( ( ℑ ‘ 𝐴 ) < 0 , ( i · - 1 ) , ( i · 1 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) ) |
| 9 |
6 7 8
|
mp2an |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , ( i · - 1 ) , ( i · 1 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) |
| 10 |
2 9
|
eqtr2i |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) = ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) |
| 11 |
10
|
a1i |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) = ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) |
| 13 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
| 14 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 15 |
|
1re |
⊢ 1 ∈ ℝ |
| 16 |
14 15
|
ifcli |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℝ |
| 17 |
16
|
a1i |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℝ ) |
| 18 |
17
|
recnd |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℂ ) |
| 19 |
|
sqrtcvallem3 |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |
| 20 |
19
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℂ ) |
| 21 |
13 18 20
|
mulassd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) |
| 22 |
12 21
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) = ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) |
| 24 |
1 23
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( if ( ( ℑ ‘ 𝐴 ) < 0 , - i , i ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) |