| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrtcvallem5 |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |
| 2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℂ ) |
| 3 |
|
ax-icn |
⊢ i ∈ ℂ |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
| 5 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 6 |
|
1re |
⊢ 1 ∈ ℝ |
| 7 |
5 6
|
ifcli |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℝ |
| 8 |
7
|
a1i |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℝ ) |
| 9 |
|
sqrtcvallem3 |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |
| 10 |
8 9
|
remulcld |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ∈ ℝ ) |
| 11 |
10
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ∈ ℂ ) |
| 12 |
4 11
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ∈ ℂ ) |
| 13 |
2 12
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ∈ ℂ ) |
| 14 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 15 |
|
binom2 |
⊢ ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℂ ∧ ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ∈ ℂ ) → ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) + ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) ) ) |
| 16 |
2 12 15
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) + ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) ) ) |
| 17 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 18 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 19 |
17 18
|
readdcld |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
| 20 |
19
|
rehalfcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ∈ ℂ ) |
| 22 |
21
|
sqsqrtd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
| 23 |
4 11
|
sqmuld |
⊢ ( 𝐴 ∈ ℂ → ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) = ( ( i ↑ 2 ) · ( ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ↑ 2 ) ) ) |
| 24 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
| 25 |
24
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( i ↑ 2 ) = - 1 ) |
| 26 |
8
|
recnd |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ∈ ℂ ) |
| 27 |
9
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ∈ ℂ ) |
| 28 |
26 27
|
sqmuld |
⊢ ( 𝐴 ∈ ℂ → ( ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ↑ 2 ) = ( ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ↑ 2 ) · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) ) ) |
| 29 |
|
ovif |
⊢ ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ↑ 2 ) = if ( ( ℑ ‘ 𝐴 ) < 0 , ( - 1 ↑ 2 ) , ( 1 ↑ 2 ) ) |
| 30 |
|
neg1sqe1 |
⊢ ( - 1 ↑ 2 ) = 1 |
| 31 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 32 |
|
ifeq12 |
⊢ ( ( ( - 1 ↑ 2 ) = 1 ∧ ( 1 ↑ 2 ) = 1 ) → if ( ( ℑ ‘ 𝐴 ) < 0 , ( - 1 ↑ 2 ) , ( 1 ↑ 2 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , 1 , 1 ) ) |
| 33 |
30 31 32
|
mp2an |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , ( - 1 ↑ 2 ) , ( 1 ↑ 2 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , 1 , 1 ) |
| 34 |
|
ifid |
⊢ if ( ( ℑ ‘ 𝐴 ) < 0 , 1 , 1 ) = 1 |
| 35 |
29 33 34
|
3eqtri |
⊢ ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ↑ 2 ) = 1 |
| 36 |
35
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ↑ 2 ) = 1 ) |
| 37 |
17 18
|
resubcld |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
| 38 |
37
|
rehalfcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ∈ ℂ ) |
| 40 |
39
|
sqsqrtd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
| 41 |
36 40
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) ↑ 2 ) · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) ) = ( 1 · ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 42 |
39
|
mullidd |
⊢ ( 𝐴 ∈ ℂ → ( 1 · ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) = ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
| 43 |
28 41 42
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
| 44 |
25 43
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( i ↑ 2 ) · ( ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ↑ 2 ) ) = ( - 1 · ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 45 |
39
|
mulm1d |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) = - ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
| 46 |
23 44 45
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) = - ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
| 47 |
22 46
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) + ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) ) = ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) + - ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 48 |
21 39
|
negsubd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) + - ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) = ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) − ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 49 |
17
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 50 |
18
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 51 |
49 50 50
|
pnncand |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) − ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) |
| 52 |
50
|
2timesd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ℜ ‘ 𝐴 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) |
| 53 |
51 52
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) − ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) = ( 2 · ( ℜ ‘ 𝐴 ) ) ) |
| 54 |
53
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) − ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) / 2 ) = ( ( 2 · ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
| 55 |
19
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
| 56 |
37
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
| 57 |
|
2cnd |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) |
| 58 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 59 |
58
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ≠ 0 ) |
| 60 |
55 56 57 59
|
divsubdird |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) − ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) / 2 ) = ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) − ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 61 |
50 57 59
|
divcan3d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( ℜ ‘ 𝐴 ) ) / 2 ) = ( ℜ ‘ 𝐴 ) ) |
| 62 |
54 60 61
|
3eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) − ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 63 |
47 48 62
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) + ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 64 |
57 2
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ∈ ℂ ) |
| 65 |
64 4 11
|
mul12d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) = ( i · ( ( 2 · ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) |
| 66 |
57 2 12
|
mulassd |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) = ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) |
| 67 |
57 2 11
|
mulassd |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) = ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) |
| 68 |
2 26 27
|
mul12d |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) = ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) |
| 69 |
|
sqrtcvallem4 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
| 70 |
|
halfnneg2 |
⊢ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ∈ ℝ → ( 0 ≤ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ↔ 0 ≤ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 71 |
19 70
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ↔ 0 ≤ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 72 |
69 71
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) |
| 73 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 74 |
73
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℝ+ ) |
| 75 |
19 72 74
|
sqrtdivd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) = ( ( √ ‘ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) / ( √ ‘ 2 ) ) ) |
| 76 |
|
sqrtcvallem2 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
| 77 |
|
halfnneg2 |
⊢ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ → ( 0 ≤ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ↔ 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 78 |
37 77
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ↔ 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 79 |
76 78
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) |
| 80 |
37 79 74
|
sqrtdivd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) = ( ( √ ‘ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) / ( √ ‘ 2 ) ) ) |
| 81 |
75 80
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( ( ( √ ‘ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) / ( √ ‘ 2 ) ) · ( ( √ ‘ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) / ( √ ‘ 2 ) ) ) ) |
| 82 |
19 72
|
resqrtcld |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 83 |
82
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 84 |
|
2re |
⊢ 2 ∈ ℝ |
| 85 |
84
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℝ ) |
| 86 |
|
0le2 |
⊢ 0 ≤ 2 |
| 87 |
86
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ 2 ) |
| 88 |
85 87
|
resqrtcld |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 2 ) ∈ ℝ ) |
| 89 |
88
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 2 ) ∈ ℂ ) |
| 90 |
37 79
|
resqrtcld |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 91 |
90
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 92 |
|
sqrt00 |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( ( √ ‘ 2 ) = 0 ↔ 2 = 0 ) ) |
| 93 |
84 86 92
|
mp2an |
⊢ ( ( √ ‘ 2 ) = 0 ↔ 2 = 0 ) |
| 94 |
93
|
necon3bii |
⊢ ( ( √ ‘ 2 ) ≠ 0 ↔ 2 ≠ 0 ) |
| 95 |
58 94
|
mpbir |
⊢ ( √ ‘ 2 ) ≠ 0 |
| 96 |
95
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 2 ) ≠ 0 ) |
| 97 |
83 89 91 89 96 96
|
divmuldivd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) / ( √ ‘ 2 ) ) · ( ( √ ‘ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) / ( √ ‘ 2 ) ) ) = ( ( ( √ ‘ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) · ( √ ‘ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ) / ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) ) ) |
| 98 |
18
|
resqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 99 |
98
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 100 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 101 |
100
|
resqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 102 |
101
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 103 |
|
absvalsq2 |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 104 |
99 102 103
|
mvrladdd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) − ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) |
| 105 |
|
subsq |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) − ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) · ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ) |
| 106 |
49 50 105
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) − ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) · ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ) |
| 107 |
104 106
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) · ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ) |
| 108 |
107
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) · ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ) ) |
| 109 |
100
|
absred |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = ( √ ‘ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 110 |
|
reabsifneg |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℝ → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ) |
| 111 |
100 110
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ) |
| 112 |
109 111
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ) |
| 113 |
19 72 37 79
|
sqrtmuld |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) · ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ) = ( ( √ ‘ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) · ( √ ‘ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ) ) |
| 114 |
108 112 113
|
3eqtr3rd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) · ( √ ‘ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ) |
| 115 |
|
remsqsqrt |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 ) |
| 116 |
84 86 115
|
mp2an |
⊢ ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 |
| 117 |
116
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 ) |
| 118 |
114 117
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) · ( √ ‘ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) ) / ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) ) = ( if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) / 2 ) ) |
| 119 |
81 97 118
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) / 2 ) ) |
| 120 |
119
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) = ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) |
| 121 |
68 120
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) = ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) |
| 122 |
121
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) = ( 2 · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) ) |
| 123 |
100
|
renegcld |
⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 124 |
123 100
|
ifcld |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 125 |
124
|
recnd |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 126 |
26 125 57 59
|
divassd |
⊢ ( 𝐴 ∈ ℂ → ( ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ) / 2 ) = ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) |
| 127 |
|
ovif12 |
⊢ ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ) = if ( ( ℑ ‘ 𝐴 ) < 0 , ( - 1 · - ( ℑ ‘ 𝐴 ) ) , ( 1 · ( ℑ ‘ 𝐴 ) ) ) |
| 128 |
5
|
a1i |
⊢ ( 𝐴 ∈ ℂ → - 1 ∈ ℝ ) |
| 129 |
128
|
recnd |
⊢ ( 𝐴 ∈ ℂ → - 1 ∈ ℂ ) |
| 130 |
100
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 131 |
129 129 130
|
mulassd |
⊢ ( 𝐴 ∈ ℂ → ( ( - 1 · - 1 ) · ( ℑ ‘ 𝐴 ) ) = ( - 1 · ( - 1 · ( ℑ ‘ 𝐴 ) ) ) ) |
| 132 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
| 133 |
132
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · - 1 ) = 1 ) |
| 134 |
133
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( - 1 · - 1 ) · ( ℑ ‘ 𝐴 ) ) = ( 1 · ( ℑ ‘ 𝐴 ) ) ) |
| 135 |
130
|
mullidd |
⊢ ( 𝐴 ∈ ℂ → ( 1 · ( ℑ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) ) |
| 136 |
134 135
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( - 1 · - 1 ) · ( ℑ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) ) |
| 137 |
130
|
mulm1d |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( ℑ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 138 |
137
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( - 1 · ( ℑ ‘ 𝐴 ) ) ) = ( - 1 · - ( ℑ ‘ 𝐴 ) ) ) |
| 139 |
131 136 138
|
3eqtr3rd |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · - ( ℑ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) ) |
| 140 |
139
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - 1 · - ( ℑ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) ) |
| 141 |
135
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ ( ℑ ‘ 𝐴 ) < 0 ) → ( 1 · ( ℑ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) ) |
| 142 |
140 141
|
ifeqda |
⊢ ( 𝐴 ∈ ℂ → if ( ( ℑ ‘ 𝐴 ) < 0 , ( - 1 · - ( ℑ ‘ 𝐴 ) ) , ( 1 · ( ℑ ‘ 𝐴 ) ) ) = ( ℑ ‘ 𝐴 ) ) |
| 143 |
127 142
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ) = ( ℑ ‘ 𝐴 ) ) |
| 144 |
143
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) ) / 2 ) = ( ( ℑ ‘ 𝐴 ) / 2 ) ) |
| 145 |
126 144
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) / 2 ) ) = ( ( ℑ ‘ 𝐴 ) / 2 ) ) |
| 146 |
145
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) = ( 2 · ( ( ℑ ‘ 𝐴 ) / 2 ) ) ) |
| 147 |
130 57 59
|
divcan2d |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( ℑ ‘ 𝐴 ) / 2 ) ) = ( ℑ ‘ 𝐴 ) ) |
| 148 |
146 147
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - ( ℑ ‘ 𝐴 ) , ( ℑ ‘ 𝐴 ) ) / 2 ) ) ) = ( ℑ ‘ 𝐴 ) ) |
| 149 |
67 122 148
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) = ( ℑ ‘ 𝐴 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ( 2 · ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ) |
| 151 |
65 66 150
|
3eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) = ( i · ( ℑ ‘ 𝐴 ) ) ) |
| 152 |
63 151
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) + ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) ) + ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 153 |
1
|
resqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) ∈ ℝ ) |
| 154 |
153
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) ∈ ℂ ) |
| 155 |
2 12
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ∈ ℂ ) |
| 156 |
57 155
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ∈ ℂ ) |
| 157 |
12
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) ∈ ℂ ) |
| 158 |
154 156 157
|
add32d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) + ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) + ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) ) + ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) ) |
| 159 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 160 |
152 158 159
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) · ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) + ( ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ↑ 2 ) ) = 𝐴 ) |
| 161 |
16 160
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ↑ 2 ) = 𝐴 ) |
| 162 |
20 69
|
sqrtge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 163 |
1 10
|
crred |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) = ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 164 |
162 163
|
breqtrrd |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) |
| 165 |
|
reim |
⊢ ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ∈ ℂ → ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) = ( ℑ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) ) |
| 166 |
13 165
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) = ( ℑ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) ) |
| 167 |
166 163
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) = ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) |
| 168 |
167
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) = 0 ↔ ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) = 0 ) ) |
| 169 |
|
cnsqrt00 |
⊢ ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) = 0 ↔ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) = 0 ) ) |
| 170 |
21 169
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) = 0 ↔ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) = 0 ) ) |
| 171 |
|
half0 |
⊢ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) = 0 ↔ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) = 0 ) ) |
| 172 |
55 171
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) = 0 ↔ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) = 0 ) ) |
| 173 |
49 50
|
addcomd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) = ( ( ℜ ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) ) |
| 174 |
173
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) = 0 ↔ ( ( ℜ ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) = 0 ) ) |
| 175 |
|
addeq0 |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) = 0 ↔ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ) ) |
| 176 |
50 49 175
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) = 0 ↔ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ) ) |
| 177 |
172 174 176
|
3bitrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) = 0 ↔ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ) ) |
| 178 |
168 170 177
|
3bitrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) = 0 ↔ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ) ) |
| 179 |
|
olc |
⊢ ( ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) → ( ( ℜ ‘ 𝐴 ) = ( abs ‘ 𝐴 ) ∨ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ) ) |
| 180 |
|
eqcom |
⊢ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) |
| 181 |
180
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 182 |
|
sqeqor |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ℜ ‘ 𝐴 ) = ( abs ‘ 𝐴 ) ∨ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ) ) ) |
| 183 |
50 49 182
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ℜ ‘ 𝐴 ) = ( abs ‘ 𝐴 ) ∨ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ) ) ) |
| 184 |
103
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 185 |
|
addid0 |
⊢ ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) = 0 ) ) |
| 186 |
99 102 185
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ↔ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) = 0 ) ) |
| 187 |
|
sqeq0 |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( ( ( ℑ ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 188 |
130 187
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℑ ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 189 |
184 186 188
|
3bitrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 190 |
181 183 189
|
3bitr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) = ( abs ‘ 𝐴 ) ∨ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ) ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 191 |
179 190
|
imbitrid |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) → ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 192 |
191
|
ancld |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) → ( ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) ) ) |
| 193 |
178 192
|
sylbid |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) = 0 → ( ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) ) ) |
| 194 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ) |
| 195 |
194
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + - ( abs ‘ 𝐴 ) ) ) |
| 196 |
49
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 197 |
196
|
negidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( abs ‘ 𝐴 ) + - ( abs ‘ 𝐴 ) ) = 0 ) |
| 198 |
195 197
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) = 0 ) |
| 199 |
198
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) = ( 0 / 2 ) ) |
| 200 |
|
2cn |
⊢ 2 ∈ ℂ |
| 201 |
200 58
|
div0i |
⊢ ( 0 / 2 ) = 0 |
| 202 |
199 201
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) = 0 ) |
| 203 |
202
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) = ( √ ‘ 0 ) ) |
| 204 |
|
sqrt0 |
⊢ ( √ ‘ 0 ) = 0 |
| 205 |
203 204
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) = 0 ) |
| 206 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ 𝐴 ) = 0 ) |
| 207 |
|
0red |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → 0 ∈ ℝ ) |
| 208 |
207
|
ltnrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ¬ 0 < 0 ) |
| 209 |
206 208
|
eqnbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ¬ ( ℑ ‘ 𝐴 ) < 0 ) |
| 210 |
209
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) = 1 ) |
| 211 |
194
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) − - ( abs ‘ 𝐴 ) ) ) |
| 212 |
49 49
|
subnegd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − - ( abs ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) ) |
| 213 |
49
|
2timesd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( abs ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) ) |
| 214 |
212 213
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − - ( abs ‘ 𝐴 ) ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |
| 215 |
214
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( abs ‘ 𝐴 ) − - ( abs ‘ 𝐴 ) ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |
| 216 |
211 215
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |
| 217 |
216
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) = ( ( 2 · ( abs ‘ 𝐴 ) ) / 2 ) ) |
| 218 |
49 57 59
|
divcan3d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( abs ‘ 𝐴 ) ) / 2 ) = ( abs ‘ 𝐴 ) ) |
| 219 |
218
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( 2 · ( abs ‘ 𝐴 ) ) / 2 ) = ( abs ‘ 𝐴 ) ) |
| 220 |
217 219
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) = ( abs ‘ 𝐴 ) ) |
| 221 |
220
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) = ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 222 |
210 221
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( 1 · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 223 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 224 |
17 223
|
resqrtcld |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 225 |
224
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 226 |
225
|
mullidd |
⊢ ( 𝐴 ∈ ℂ → ( 1 · ( √ ‘ ( abs ‘ 𝐴 ) ) ) = ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 227 |
226
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( 1 · ( √ ‘ ( abs ‘ 𝐴 ) ) ) = ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 228 |
222 227
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) = ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 229 |
228
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) = ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 230 |
205 229
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) = ( 0 + ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 231 |
4 225
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 232 |
231
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 233 |
232
|
addlidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( 0 + ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) = ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 234 |
230 233
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) = ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 235 |
234
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) = ( i · ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 236 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 237 |
236
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( i · i ) = - 1 ) |
| 238 |
237
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · ( √ ‘ ( abs ‘ 𝐴 ) ) ) = ( - 1 · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 239 |
4 4 225
|
mulassd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · ( √ ‘ ( abs ‘ 𝐴 ) ) ) = ( i · ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 240 |
225
|
mulm1d |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( √ ‘ ( abs ‘ 𝐴 ) ) ) = - ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 241 |
238 239 240
|
3eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) = - ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 242 |
241
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( i · ( i · ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) = - ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 243 |
235 242
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) = - ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 244 |
243
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) = ( ℜ ‘ - ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 245 |
224
|
renegcld |
⊢ ( 𝐴 ∈ ℂ → - ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 246 |
245
|
rered |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - ( √ ‘ ( abs ‘ 𝐴 ) ) ) = - ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 247 |
246
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ - ( √ ‘ ( abs ‘ 𝐴 ) ) ) = - ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 248 |
244 247
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) = - ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 249 |
17 223
|
sqrtge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( √ ‘ ( abs ‘ 𝐴 ) ) ) |
| 250 |
224
|
le0neg2d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( √ ‘ ( abs ‘ 𝐴 ) ) ↔ - ( √ ‘ ( abs ‘ 𝐴 ) ) ≤ 0 ) ) |
| 251 |
249 250
|
mpbid |
⊢ ( 𝐴 ∈ ℂ → - ( √ ‘ ( abs ‘ 𝐴 ) ) ≤ 0 ) |
| 252 |
251
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → - ( √ ‘ ( abs ‘ 𝐴 ) ) ≤ 0 ) |
| 253 |
248 252
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) ≤ 0 ) |
| 254 |
253
|
3expib |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) = - ( abs ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) ≤ 0 ) ) |
| 255 |
193 254
|
syld |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) = 0 → ( ℜ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) ≤ 0 ) ) |
| 256 |
4 13
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ∈ ℂ ) |
| 257 |
256
|
sqrtcvallem1 |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℑ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) = 0 → ( ℜ ‘ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ) ≤ 0 ) ↔ ¬ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ∈ ℝ+ ) ) |
| 258 |
255 257
|
mpbid |
⊢ ( 𝐴 ∈ ℂ → ¬ ( i · ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) ∈ ℝ+ ) |
| 259 |
13 14 161 164 258
|
eqsqrtd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) = ( √ ‘ 𝐴 ) ) |
| 260 |
259
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ( √ ‘ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) + ( i · ( if ( ( ℑ ‘ 𝐴 ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) ) ) ) ) |