| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqrtcvallem5 | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ∈  ℝ ) | 
						
							| 2 | 1 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ∈  ℂ ) | 
						
							| 3 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  i  ∈  ℂ ) | 
						
							| 5 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 6 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 7 | 5 6 | ifcli | ⊢ if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ∈  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ∈  ℝ ) | 
						
							| 9 |  | sqrtcvallem3 | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ∈  ℝ ) | 
						
							| 10 | 8 9 | remulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ∈  ℂ ) | 
						
							| 12 | 4 11 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) )  ∈  ℂ ) | 
						
							| 13 | 2 12 | addcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  ∈  ℂ ) | 
						
							| 14 |  | id | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  ℂ ) | 
						
							| 15 |  | binom2 | ⊢ ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ∈  ℂ  ∧  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) )  ∈  ℂ )  →  ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ↑ 2 )  =  ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  +  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 ) ) ) | 
						
							| 16 | 2 12 15 | syl2anc | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ↑ 2 )  =  ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  +  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 ) ) ) | 
						
							| 17 |  | abscl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 18 |  | recl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 19 | 17 18 | readdcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 20 | 19 | rehalfcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  ∈  ℝ ) | 
						
							| 21 | 20 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  ∈  ℂ ) | 
						
							| 22 | 21 | sqsqrtd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  =  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 23 | 4 11 | sqmuld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 )  =  ( ( i ↑ 2 )  ·  ( ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ↑ 2 ) ) ) | 
						
							| 24 |  | i2 | ⊢ ( i ↑ 2 )  =  - 1 | 
						
							| 25 | 24 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( i ↑ 2 )  =  - 1 ) | 
						
							| 26 | 8 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ∈  ℂ ) | 
						
							| 27 | 9 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ∈  ℂ ) | 
						
							| 28 | 26 27 | sqmuld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ↑ 2 )  =  ( ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) ↑ 2 )  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 ) ) ) | 
						
							| 29 |  | ovif | ⊢ ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) ↑ 2 )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  ( - 1 ↑ 2 ) ,  ( 1 ↑ 2 ) ) | 
						
							| 30 |  | neg1sqe1 | ⊢ ( - 1 ↑ 2 )  =  1 | 
						
							| 31 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 32 |  | ifeq12 | ⊢ ( ( ( - 1 ↑ 2 )  =  1  ∧  ( 1 ↑ 2 )  =  1 )  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  ( - 1 ↑ 2 ) ,  ( 1 ↑ 2 ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  1 ,  1 ) ) | 
						
							| 33 | 30 31 32 | mp2an | ⊢ if ( ( ℑ ‘ 𝐴 )  <  0 ,  ( - 1 ↑ 2 ) ,  ( 1 ↑ 2 ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  1 ,  1 ) | 
						
							| 34 |  | ifid | ⊢ if ( ( ℑ ‘ 𝐴 )  <  0 ,  1 ,  1 )  =  1 | 
						
							| 35 | 29 33 34 | 3eqtri | ⊢ ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) ↑ 2 )  =  1 | 
						
							| 36 | 35 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) ↑ 2 )  =  1 ) | 
						
							| 37 | 17 18 | resubcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 38 | 37 | rehalfcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 )  ∈  ℝ ) | 
						
							| 39 | 38 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 )  ∈  ℂ ) | 
						
							| 40 | 39 | sqsqrtd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  =  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 41 | 36 40 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 ) ↑ 2 )  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 ) )  =  ( 1  ·  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 42 | 39 | mullidd | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 43 | 28 41 42 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ↑ 2 )  =  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 44 | 25 43 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i ↑ 2 )  ·  ( ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ↑ 2 ) )  =  ( - 1  ·  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 45 | 39 | mulm1d | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  - ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 46 | 23 44 45 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 )  =  - ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 47 | 22 46 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  +  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 ) )  =  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  +  - ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 48 | 21 39 | negsubd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  +  - ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  −  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 49 | 17 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 50 | 18 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 51 | 49 50 50 | pnncand | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  −  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) )  =  ( ( ℜ ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 52 | 50 | 2timesd | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ℜ ‘ 𝐴 ) )  =  ( ( ℜ ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 53 | 51 52 | eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  −  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) )  =  ( 2  ·  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  −  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) )  /  2 )  =  ( ( 2  ·  ( ℜ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 55 | 19 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 56 | 37 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 57 |  | 2cnd | ⊢ ( 𝐴  ∈  ℂ  →  2  ∈  ℂ ) | 
						
							| 58 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 59 | 58 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  2  ≠  0 ) | 
						
							| 60 | 55 56 57 59 | divsubdird | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  −  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) )  /  2 )  =  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  −  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 61 | 50 57 59 | divcan3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( ℜ ‘ 𝐴 ) )  /  2 )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 62 | 54 60 61 | 3eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  −  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 63 | 47 48 62 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  +  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 64 | 57 2 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ∈  ℂ ) | 
						
							| 65 | 64 4 11 | mul12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  =  ( i  ·  ( ( 2  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) | 
						
							| 66 | 57 2 12 | mulassd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  =  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) ) | 
						
							| 67 | 57 2 11 | mulassd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) )  =  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) | 
						
							| 68 | 2 26 27 | mul12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) )  =  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) | 
						
							| 69 |  | sqrtcvallem4 | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 70 |  | halfnneg2 | ⊢ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ∈  ℝ  →  ( 0  ≤  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ↔  0  ≤  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 71 | 19 70 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  ≤  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ↔  0  ≤  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 72 | 69 71 | mpbird | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 73 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 74 | 73 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  2  ∈  ℝ+ ) | 
						
							| 75 | 19 72 74 | sqrtdivd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  ( ( √ ‘ ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) )  /  ( √ ‘ 2 ) ) ) | 
						
							| 76 |  | sqrtcvallem2 | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 77 |  | halfnneg2 | ⊢ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  ∈  ℝ  →  ( 0  ≤  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  ↔  0  ≤  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 78 | 37 77 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  ≤  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  ↔  0  ≤  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 79 | 76 78 | mpbird | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 80 | 37 79 74 | sqrtdivd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  ( ( √ ‘ ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) )  /  ( √ ‘ 2 ) ) ) | 
						
							| 81 | 75 80 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  =  ( ( ( √ ‘ ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) )  /  ( √ ‘ 2 ) )  ·  ( ( √ ‘ ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) )  /  ( √ ‘ 2 ) ) ) ) | 
						
							| 82 | 19 72 | resqrtcld | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 83 | 82 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 84 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 85 | 84 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  2  ∈  ℝ ) | 
						
							| 86 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 87 | 86 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  2 ) | 
						
							| 88 | 85 87 | resqrtcld | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ 2 )  ∈  ℝ ) | 
						
							| 89 | 88 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ 2 )  ∈  ℂ ) | 
						
							| 90 | 37 79 | resqrtcld | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 91 | 90 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 92 |  | sqrt00 | ⊢ ( ( 2  ∈  ℝ  ∧  0  ≤  2 )  →  ( ( √ ‘ 2 )  =  0  ↔  2  =  0 ) ) | 
						
							| 93 | 84 86 92 | mp2an | ⊢ ( ( √ ‘ 2 )  =  0  ↔  2  =  0 ) | 
						
							| 94 | 93 | necon3bii | ⊢ ( ( √ ‘ 2 )  ≠  0  ↔  2  ≠  0 ) | 
						
							| 95 | 58 94 | mpbir | ⊢ ( √ ‘ 2 )  ≠  0 | 
						
							| 96 | 95 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ 2 )  ≠  0 ) | 
						
							| 97 | 83 89 91 89 96 96 | divmuldivd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( √ ‘ ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) )  /  ( √ ‘ 2 ) )  ·  ( ( √ ‘ ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) )  /  ( √ ‘ 2 ) ) )  =  ( ( ( √ ‘ ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) )  ·  ( √ ‘ ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) )  /  ( ( √ ‘ 2 )  ·  ( √ ‘ 2 ) ) ) ) | 
						
							| 98 | 18 | resqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 99 | 98 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 100 |  | imcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 101 | 100 | resqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℑ ‘ 𝐴 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 102 | 101 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℑ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 103 |  | absvalsq2 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 104 | 99 102 103 | mvrladdd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  −  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 105 |  | subsq | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ∈  ℂ )  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  −  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ·  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 106 | 49 50 105 | syl2anc | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  −  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ·  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 107 | 104 106 | eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℑ ‘ 𝐴 ) ↑ 2 )  =  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ·  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 108 | 107 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ·  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) ) ) | 
						
							| 109 | 100 | absred | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  =  ( √ ‘ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 110 |  | reabsifneg | ⊢ ( ( ℑ ‘ 𝐴 )  ∈  ℝ  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 111 | 100 110 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 112 | 109 111 | eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 113 | 19 72 37 79 | sqrtmuld | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ·  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) )  =  ( ( √ ‘ ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) )  ·  ( √ ‘ ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) ) ) | 
						
							| 114 | 108 112 113 | 3eqtr3rd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) )  ·  ( √ ‘ ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 115 |  | remsqsqrt | ⊢ ( ( 2  ∈  ℝ  ∧  0  ≤  2 )  →  ( ( √ ‘ 2 )  ·  ( √ ‘ 2 ) )  =  2 ) | 
						
							| 116 | 84 86 115 | mp2an | ⊢ ( ( √ ‘ 2 )  ·  ( √ ‘ 2 ) )  =  2 | 
						
							| 117 | 116 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ 2 )  ·  ( √ ‘ 2 ) )  =  2 ) | 
						
							| 118 | 114 117 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( √ ‘ ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) )  ·  ( √ ‘ ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) ) ) )  /  ( ( √ ‘ 2 )  ·  ( √ ‘ 2 ) ) )  =  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 119 | 81 97 118 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  =  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 120 | 119 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) )  =  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 121 | 68 120 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) )  =  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 122 | 121 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  =  ( 2  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  /  2 ) ) ) ) | 
						
							| 123 | 100 | renegcld | ⊢ ( 𝐴  ∈  ℂ  →  - ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 124 | 123 100 | ifcld | ⊢ ( 𝐴  ∈  ℂ  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 125 | 124 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 126 | 26 125 57 59 | divassd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) ) )  /  2 )  =  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 127 |  | ovif12 | ⊢ ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) ) )  =  if ( ( ℑ ‘ 𝐴 )  <  0 ,  ( - 1  ·  - ( ℑ ‘ 𝐴 ) ) ,  ( 1  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 128 | 5 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  - 1  ∈  ℝ ) | 
						
							| 129 | 128 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  - 1  ∈  ℂ ) | 
						
							| 130 | 100 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 131 | 129 129 130 | mulassd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( - 1  ·  - 1 )  ·  ( ℑ ‘ 𝐴 ) )  =  ( - 1  ·  ( - 1  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 132 |  | neg1mulneg1e1 | ⊢ ( - 1  ·  - 1 )  =  1 | 
						
							| 133 | 132 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  - 1 )  =  1 ) | 
						
							| 134 | 133 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( - 1  ·  - 1 )  ·  ( ℑ ‘ 𝐴 ) )  =  ( 1  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 135 | 130 | mullidd | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  ( ℑ ‘ 𝐴 ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 136 | 134 135 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( - 1  ·  - 1 )  ·  ( ℑ ‘ 𝐴 ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 137 | 130 | mulm1d | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  ( ℑ ‘ 𝐴 ) )  =  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 138 | 137 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  ( - 1  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( - 1  ·  - ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 139 | 131 136 138 | 3eqtr3rd | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  - ( ℑ ‘ 𝐴 ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 140 | 139 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( - 1  ·  - ( ℑ ‘ 𝐴 ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 141 | 135 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  ( ℑ ‘ 𝐴 )  <  0 )  →  ( 1  ·  ( ℑ ‘ 𝐴 ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 142 | 140 141 | ifeqda | ⊢ ( 𝐴  ∈  ℂ  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  ( - 1  ·  - ( ℑ ‘ 𝐴 ) ) ,  ( 1  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 143 | 127 142 | eqtrid | ⊢ ( 𝐴  ∈  ℂ  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 144 | 143 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) ) )  /  2 )  =  ( ( ℑ ‘ 𝐴 )  /  2 ) ) | 
						
							| 145 | 126 144 | eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  /  2 ) )  =  ( ( ℑ ‘ 𝐴 )  /  2 ) ) | 
						
							| 146 | 145 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  /  2 ) ) )  =  ( 2  ·  ( ( ℑ ‘ 𝐴 )  /  2 ) ) ) | 
						
							| 147 | 130 57 59 | divcan2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( ℑ ‘ 𝐴 )  /  2 ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 148 | 146 147 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - ( ℑ ‘ 𝐴 ) ,  ( ℑ ‘ 𝐴 ) )  /  2 ) ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 149 | 67 122 148 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 150 | 149 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( ( 2  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  =  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 151 | 65 66 150 | 3eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  =  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 152 | 63 151 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  +  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 ) )  +  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 153 | 1 | resqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 154 | 153 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 155 | 2 12 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  ∈  ℂ ) | 
						
							| 156 | 57 155 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  ∈  ℂ ) | 
						
							| 157 | 12 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 158 | 154 156 157 | add32d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  +  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 ) )  =  ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  +  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 ) )  +  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) ) ) | 
						
							| 159 |  | replim | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 160 | 152 158 159 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  +  ( 2  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  ·  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  +  ( ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ↑ 2 ) )  =  𝐴 ) | 
						
							| 161 | 16 160 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ↑ 2 )  =  𝐴 ) | 
						
							| 162 | 20 69 | sqrtge0d | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 163 | 1 10 | crred | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  =  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 164 | 162 163 | breqtrrd | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) ) | 
						
							| 165 |  | reim | ⊢ ( ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  ∈  ℂ  →  ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  =  ( ℑ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) ) ) | 
						
							| 166 | 13 165 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  =  ( ℑ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) ) ) | 
						
							| 167 | 166 163 | eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  =  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 168 | 167 | eqeq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℑ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  =  0  ↔  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  0 ) ) | 
						
							| 169 |  | cnsqrt00 | ⊢ ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  0  ↔  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  =  0 ) ) | 
						
							| 170 | 21 169 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  0  ↔  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  =  0 ) ) | 
						
							| 171 |  | half0 | ⊢ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  =  0  ↔  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 172 | 55 171 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  =  0  ↔  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 173 | 49 50 | addcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  =  ( ( ℜ ‘ 𝐴 )  +  ( abs ‘ 𝐴 ) ) ) | 
						
							| 174 | 173 | eqeq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  =  0  ↔  ( ( ℜ ‘ 𝐴 )  +  ( abs ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 175 |  | addeq0 | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  ∈  ℂ )  →  ( ( ( ℜ ‘ 𝐴 )  +  ( abs ‘ 𝐴 ) )  =  0  ↔  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 ) ) ) | 
						
							| 176 | 50 49 175 | syl2anc | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ℜ ‘ 𝐴 )  +  ( abs ‘ 𝐴 ) )  =  0  ↔  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 ) ) ) | 
						
							| 177 | 172 174 176 | 3bitrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  =  0  ↔  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 ) ) ) | 
						
							| 178 | 168 170 177 | 3bitrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℑ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  =  0  ↔  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 ) ) ) | 
						
							| 179 |  | olc | ⊢ ( ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  →  ( ( ℜ ‘ 𝐴 )  =  ( abs ‘ 𝐴 )  ∨  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 ) ) ) | 
						
							| 180 |  | eqcom | ⊢ ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  =  ( ( abs ‘ 𝐴 ) ↑ 2 )  ↔  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 181 | 180 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  =  ( ( abs ‘ 𝐴 ) ↑ 2 )  ↔  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 182 |  | sqeqor | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  ∈  ℂ )  →  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  =  ( ( abs ‘ 𝐴 ) ↑ 2 )  ↔  ( ( ℜ ‘ 𝐴 )  =  ( abs ‘ 𝐴 )  ∨  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 183 | 50 49 182 | syl2anc | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  =  ( ( abs ‘ 𝐴 ) ↑ 2 )  ↔  ( ( ℜ ‘ 𝐴 )  =  ( abs ‘ 𝐴 )  ∨  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 184 | 103 | eqeq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ↔  ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 185 |  | addid0 | ⊢ ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ  ∧  ( ( ℑ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ )  →  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ↔  ( ( ℑ ‘ 𝐴 ) ↑ 2 )  =  0 ) ) | 
						
							| 186 | 99 102 185 | syl2anc | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 )  +  ( ( ℑ ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ↔  ( ( ℑ ‘ 𝐴 ) ↑ 2 )  =  0 ) ) | 
						
							| 187 |  | sqeq0 | ⊢ ( ( ℑ ‘ 𝐴 )  ∈  ℂ  →  ( ( ( ℑ ‘ 𝐴 ) ↑ 2 )  =  0  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 188 | 130 187 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ℑ ‘ 𝐴 ) ↑ 2 )  =  0  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 189 | 184 186 188 | 3bitrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( ( ℜ ‘ 𝐴 ) ↑ 2 )  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 190 | 181 183 189 | 3bitr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ℜ ‘ 𝐴 )  =  ( abs ‘ 𝐴 )  ∨  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 ) )  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 191 | 179 190 | imbitrid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  →  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 192 | 191 | ancld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  →  ( ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 ) ) ) | 
						
							| 193 | 178 192 | sylbid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℑ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  =  0  →  ( ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 ) ) ) | 
						
							| 194 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 ) ) | 
						
							| 195 | 194 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  =  ( ( abs ‘ 𝐴 )  +  - ( abs ‘ 𝐴 ) ) ) | 
						
							| 196 | 49 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 197 | 196 | negidd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( abs ‘ 𝐴 )  +  - ( abs ‘ 𝐴 ) )  =  0 ) | 
						
							| 198 | 195 197 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  =  0 ) | 
						
							| 199 | 198 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  =  ( 0  /  2 ) ) | 
						
							| 200 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 201 | 200 58 | div0i | ⊢ ( 0  /  2 )  =  0 | 
						
							| 202 | 199 201 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 )  =  0 ) | 
						
							| 203 | 202 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  ( √ ‘ 0 ) ) | 
						
							| 204 |  | sqrt0 | ⊢ ( √ ‘ 0 )  =  0 | 
						
							| 205 | 203 204 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  0 ) | 
						
							| 206 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℑ ‘ 𝐴 )  =  0 ) | 
						
							| 207 |  | 0red | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  0  ∈  ℝ ) | 
						
							| 208 | 207 | ltnrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ¬  0  <  0 ) | 
						
							| 209 | 206 208 | eqnbrtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ¬  ( ℑ ‘ 𝐴 )  <  0 ) | 
						
							| 210 | 209 | iffalsed | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  =  1 ) | 
						
							| 211 | 194 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  =  ( ( abs ‘ 𝐴 )  −  - ( abs ‘ 𝐴 ) ) ) | 
						
							| 212 | 49 49 | subnegd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  −  - ( abs ‘ 𝐴 ) )  =  ( ( abs ‘ 𝐴 )  +  ( abs ‘ 𝐴 ) ) ) | 
						
							| 213 | 49 | 2timesd | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( abs ‘ 𝐴 ) )  =  ( ( abs ‘ 𝐴 )  +  ( abs ‘ 𝐴 ) ) ) | 
						
							| 214 | 212 213 | eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  −  - ( abs ‘ 𝐴 ) )  =  ( 2  ·  ( abs ‘ 𝐴 ) ) ) | 
						
							| 215 | 214 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( abs ‘ 𝐴 )  −  - ( abs ‘ 𝐴 ) )  =  ( 2  ·  ( abs ‘ 𝐴 ) ) ) | 
						
							| 216 | 211 215 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  =  ( 2  ·  ( abs ‘ 𝐴 ) ) ) | 
						
							| 217 | 216 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 )  =  ( ( 2  ·  ( abs ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 218 | 49 57 59 | divcan3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( abs ‘ 𝐴 ) )  /  2 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 219 | 218 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( 2  ·  ( abs ‘ 𝐴 ) )  /  2 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 220 | 217 219 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 221 | 220 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) )  =  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 222 | 210 221 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  =  ( 1  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 223 |  | absge0 | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 224 | 17 223 | resqrtcld | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 225 | 224 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 226 | 225 | mullidd | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) )  =  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 227 | 226 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( 1  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) )  =  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 228 | 222 227 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) )  =  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 229 | 228 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) )  =  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 230 | 205 229 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  =  ( 0  +  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 231 | 4 225 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 232 | 231 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 233 | 232 | addlidd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( 0  +  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) )  =  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 234 | 230 233 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  =  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 235 | 234 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  =  ( i  ·  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 236 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 237 | 236 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  i )  =  - 1 ) | 
						
							| 238 | 237 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  i )  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) )  =  ( - 1  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 239 | 4 4 225 | mulassd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  i )  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) )  =  ( i  ·  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 240 | 225 | mulm1d | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) )  =  - ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 241 | 238 239 240 | 3eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) )  =  - ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 242 | 241 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( i  ·  ( i  ·  ( √ ‘ ( abs ‘ 𝐴 ) ) ) )  =  - ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 243 | 235 242 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  =  - ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 244 | 243 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℜ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  =  ( ℜ ‘ - ( √ ‘ ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 245 | 224 | renegcld | ⊢ ( 𝐴  ∈  ℂ  →  - ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 246 | 245 | rered | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ - ( √ ‘ ( abs ‘ 𝐴 ) ) )  =  - ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 247 | 246 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℜ ‘ - ( √ ‘ ( abs ‘ 𝐴 ) ) )  =  - ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 248 | 244 247 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℜ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  =  - ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 249 | 17 223 | sqrtge0d | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( √ ‘ ( abs ‘ 𝐴 ) ) ) | 
						
							| 250 | 224 | le0neg2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  ≤  ( √ ‘ ( abs ‘ 𝐴 ) )  ↔  - ( √ ‘ ( abs ‘ 𝐴 ) )  ≤  0 ) ) | 
						
							| 251 | 249 250 | mpbid | ⊢ ( 𝐴  ∈  ℂ  →  - ( √ ‘ ( abs ‘ 𝐴 ) )  ≤  0 ) | 
						
							| 252 | 251 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  - ( √ ‘ ( abs ‘ 𝐴 ) )  ≤  0 ) | 
						
							| 253 | 248 252 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℜ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  ≤  0 ) | 
						
							| 254 | 253 | 3expib | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ℜ ‘ 𝐴 )  =  - ( abs ‘ 𝐴 )  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℜ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  ≤  0 ) ) | 
						
							| 255 | 193 254 | syld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℑ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  =  0  →  ( ℜ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  ≤  0 ) ) | 
						
							| 256 | 4 13 | mulcld | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  ∈  ℂ ) | 
						
							| 257 | 256 | sqrtcvallem1 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ℑ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  =  0  →  ( ℜ ‘ ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) )  ≤  0 )  ↔  ¬  ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  ∈  ℝ+ ) ) | 
						
							| 258 | 255 257 | mpbid | ⊢ ( 𝐴  ∈  ℂ  →  ¬  ( i  ·  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) )  ∈  ℝ+ ) | 
						
							| 259 | 13 14 161 164 258 | eqsqrtd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) )  =  ( √ ‘ 𝐴 ) ) | 
						
							| 260 | 259 | eqcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ 𝐴 )  =  ( ( √ ‘ ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) )  +  ( i  ·  ( if ( ( ℑ ‘ 𝐴 )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  /  2 ) ) ) ) ) ) |