| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqrtcvallem1.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | eldif | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ℝ+ )  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  𝐴  ∈  ℝ+ ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ℂ  ∖  ℝ+ )  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  𝐴  ∈  ℝ+ ) ) ) | 
						
							| 4 |  | imor | ⊢ ( ( ( ℑ ‘ 𝐴 )  =  0  →  ( ℜ ‘ 𝐴 )  ≤  0 )  ↔  ( ¬  ( ℑ ‘ 𝐴 )  =  0  ∨  ( ℜ ‘ 𝐴 )  ≤  0 ) ) | 
						
							| 5 | 1 | biantrurd | ⊢ ( 𝜑  →  ( ¬  𝐴  ∈  ℝ  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  𝐴  ∈  ℝ ) ) ) | 
						
							| 6 |  | reim0b | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 8 | 7 | notbid | ⊢ ( 𝜑  →  ( ¬  𝐴  ∈  ℝ  ↔  ¬  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 9 | 8 | bicomd | ⊢ ( 𝜑  →  ( ¬  ( ℑ ‘ 𝐴 )  =  0  ↔  ¬  𝐴  ∈  ℝ ) ) | 
						
							| 10 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  ℝ  ↔  𝐴  ∈  ℝ ) ) | 
						
							| 11 | 10 | notbid | ⊢ ( 𝑥  =  𝐴  →  ( ¬  𝑥  ∈  ℝ  ↔  ¬  𝐴  ∈  ℝ ) ) | 
						
							| 12 | 11 | elrab | ⊢ ( 𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  𝐴  ∈  ℝ ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  𝐴  ∈  ℝ ) ) ) | 
						
							| 14 | 5 9 13 | 3bitr4d | ⊢ ( 𝜑  →  ( ¬  ( ℑ ‘ 𝐴 )  =  0  ↔  𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ } ) ) | 
						
							| 15 | 1 | biantrurd | ⊢ ( 𝜑  →  ( ¬  0  <  ( ℜ ‘ 𝐴 )  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  0  <  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 16 | 1 | recld | ⊢ ( 𝜑  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 17 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 18 | 16 17 | lenltd | ⊢ ( 𝜑  →  ( ( ℜ ‘ 𝐴 )  ≤  0  ↔  ¬  0  <  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( ℜ ‘ 𝑥 )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 20 | 19 | breq2d | ⊢ ( 𝑥  =  𝐴  →  ( 0  <  ( ℜ ‘ 𝑥 )  ↔  0  <  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 21 | 20 | notbid | ⊢ ( 𝑥  =  𝐴  →  ( ¬  0  <  ( ℜ ‘ 𝑥 )  ↔  ¬  0  <  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 22 | 21 | elrab | ⊢ ( 𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) }  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  0  <  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) }  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  0  <  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 24 | 15 18 23 | 3bitr4d | ⊢ ( 𝜑  →  ( ( ℜ ‘ 𝐴 )  ≤  0  ↔  𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } ) ) | 
						
							| 25 | 14 24 | orbi12d | ⊢ ( 𝜑  →  ( ( ¬  ( ℑ ‘ 𝐴 )  =  0  ∨  ( ℜ ‘ 𝐴 )  ≤  0 )  ↔  ( 𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∨  𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } ) ) ) | 
						
							| 26 | 4 25 | bitrid | ⊢ ( 𝜑  →  ( ( ( ℑ ‘ 𝐴 )  =  0  →  ( ℜ ‘ 𝐴 )  ≤  0 )  ↔  ( 𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∨  𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } ) ) ) | 
						
							| 27 |  | elun | ⊢ ( 𝐴  ∈  ( { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∪  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } )  ↔  ( 𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∨  𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } ) ) | 
						
							| 28 | 27 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∪  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } )  ↔  ( 𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∨  𝐴  ∈  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } ) ) ) | 
						
							| 29 |  | ianor | ⊢ ( ¬  ( 𝑥  ∈  ℝ  ∧  0  <  ( ℜ ‘ 𝑥 ) )  ↔  ( ¬  𝑥  ∈  ℝ  ∨  ¬  0  <  ( ℜ ‘ 𝑥 ) ) ) | 
						
							| 30 | 29 | bicomi | ⊢ ( ( ¬  𝑥  ∈  ℝ  ∨  ¬  0  <  ( ℜ ‘ 𝑥 ) )  ↔  ¬  ( 𝑥  ∈  ℝ  ∧  0  <  ( ℜ ‘ 𝑥 ) ) ) | 
						
							| 31 |  | elrp | ⊢ ( 𝑥  ∈  ℝ+  ↔  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 32 |  | rere | ⊢ ( 𝑥  ∈  ℝ  →  ( ℜ ‘ 𝑥 )  =  𝑥 ) | 
						
							| 33 | 32 | breq2d | ⊢ ( 𝑥  ∈  ℝ  →  ( 0  <  ( ℜ ‘ 𝑥 )  ↔  0  <  𝑥 ) ) | 
						
							| 34 | 33 | bicomd | ⊢ ( 𝑥  ∈  ℝ  →  ( 0  <  𝑥  ↔  0  <  ( ℜ ‘ 𝑥 ) ) ) | 
						
							| 35 | 34 | pm5.32i | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 )  ↔  ( 𝑥  ∈  ℝ  ∧  0  <  ( ℜ ‘ 𝑥 ) ) ) | 
						
							| 36 | 31 35 | bitri | ⊢ ( 𝑥  ∈  ℝ+  ↔  ( 𝑥  ∈  ℝ  ∧  0  <  ( ℜ ‘ 𝑥 ) ) ) | 
						
							| 37 | 30 36 | xchbinxr | ⊢ ( ( ¬  𝑥  ∈  ℝ  ∨  ¬  0  <  ( ℜ ‘ 𝑥 ) )  ↔  ¬  𝑥  ∈  ℝ+ ) | 
						
							| 38 | 37 | rabbii | ⊢ { 𝑥  ∈  ℂ  ∣  ( ¬  𝑥  ∈  ℝ  ∨  ¬  0  <  ( ℜ ‘ 𝑥 ) ) }  =  { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ+ } | 
						
							| 39 |  | unrab | ⊢ ( { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∪  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } )  =  { 𝑥  ∈  ℂ  ∣  ( ¬  𝑥  ∈  ℝ  ∨  ¬  0  <  ( ℜ ‘ 𝑥 ) ) } | 
						
							| 40 |  | dfdif2 | ⊢ ( ℂ  ∖  ℝ+ )  =  { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ+ } | 
						
							| 41 | 38 39 40 | 3eqtr4i | ⊢ ( { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∪  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } )  =  ( ℂ  ∖  ℝ+ ) | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →  ( { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∪  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } )  =  ( ℂ  ∖  ℝ+ ) ) | 
						
							| 43 | 42 | eleq2d | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( { 𝑥  ∈  ℂ  ∣  ¬  𝑥  ∈  ℝ }  ∪  { 𝑥  ∈  ℂ  ∣  ¬  0  <  ( ℜ ‘ 𝑥 ) } )  ↔  𝐴  ∈  ( ℂ  ∖  ℝ+ ) ) ) | 
						
							| 44 | 26 28 43 | 3bitr2d | ⊢ ( 𝜑  →  ( ( ( ℑ ‘ 𝐴 )  =  0  →  ( ℜ ‘ 𝐴 )  ≤  0 )  ↔  𝐴  ∈  ( ℂ  ∖  ℝ+ ) ) ) | 
						
							| 45 | 1 | biantrurd | ⊢ ( 𝜑  →  ( ¬  𝐴  ∈  ℝ+  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  𝐴  ∈  ℝ+ ) ) ) | 
						
							| 46 | 3 44 45 | 3bitr4d | ⊢ ( 𝜑  →  ( ( ( ℑ ‘ 𝐴 )  =  0  →  ( ℜ ‘ 𝐴 )  ≤  0 )  ↔  ¬  𝐴  ∈  ℝ+ ) ) |