Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtcvallem1.1 |
|- ( ph -> A e. CC ) |
2 |
|
eldif |
|- ( A e. ( CC \ RR+ ) <-> ( A e. CC /\ -. A e. RR+ ) ) |
3 |
2
|
a1i |
|- ( ph -> ( A e. ( CC \ RR+ ) <-> ( A e. CC /\ -. A e. RR+ ) ) ) |
4 |
|
imor |
|- ( ( ( Im ` A ) = 0 -> ( Re ` A ) <_ 0 ) <-> ( -. ( Im ` A ) = 0 \/ ( Re ` A ) <_ 0 ) ) |
5 |
1
|
biantrurd |
|- ( ph -> ( -. A e. RR <-> ( A e. CC /\ -. A e. RR ) ) ) |
6 |
|
reim0b |
|- ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |
7 |
1 6
|
syl |
|- ( ph -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |
8 |
7
|
notbid |
|- ( ph -> ( -. A e. RR <-> -. ( Im ` A ) = 0 ) ) |
9 |
8
|
bicomd |
|- ( ph -> ( -. ( Im ` A ) = 0 <-> -. A e. RR ) ) |
10 |
|
eleq1 |
|- ( x = A -> ( x e. RR <-> A e. RR ) ) |
11 |
10
|
notbid |
|- ( x = A -> ( -. x e. RR <-> -. A e. RR ) ) |
12 |
11
|
elrab |
|- ( A e. { x e. CC | -. x e. RR } <-> ( A e. CC /\ -. A e. RR ) ) |
13 |
12
|
a1i |
|- ( ph -> ( A e. { x e. CC | -. x e. RR } <-> ( A e. CC /\ -. A e. RR ) ) ) |
14 |
5 9 13
|
3bitr4d |
|- ( ph -> ( -. ( Im ` A ) = 0 <-> A e. { x e. CC | -. x e. RR } ) ) |
15 |
1
|
biantrurd |
|- ( ph -> ( -. 0 < ( Re ` A ) <-> ( A e. CC /\ -. 0 < ( Re ` A ) ) ) ) |
16 |
1
|
recld |
|- ( ph -> ( Re ` A ) e. RR ) |
17 |
|
0red |
|- ( ph -> 0 e. RR ) |
18 |
16 17
|
lenltd |
|- ( ph -> ( ( Re ` A ) <_ 0 <-> -. 0 < ( Re ` A ) ) ) |
19 |
|
fveq2 |
|- ( x = A -> ( Re ` x ) = ( Re ` A ) ) |
20 |
19
|
breq2d |
|- ( x = A -> ( 0 < ( Re ` x ) <-> 0 < ( Re ` A ) ) ) |
21 |
20
|
notbid |
|- ( x = A -> ( -. 0 < ( Re ` x ) <-> -. 0 < ( Re ` A ) ) ) |
22 |
21
|
elrab |
|- ( A e. { x e. CC | -. 0 < ( Re ` x ) } <-> ( A e. CC /\ -. 0 < ( Re ` A ) ) ) |
23 |
22
|
a1i |
|- ( ph -> ( A e. { x e. CC | -. 0 < ( Re ` x ) } <-> ( A e. CC /\ -. 0 < ( Re ` A ) ) ) ) |
24 |
15 18 23
|
3bitr4d |
|- ( ph -> ( ( Re ` A ) <_ 0 <-> A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) |
25 |
14 24
|
orbi12d |
|- ( ph -> ( ( -. ( Im ` A ) = 0 \/ ( Re ` A ) <_ 0 ) <-> ( A e. { x e. CC | -. x e. RR } \/ A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) ) |
26 |
4 25
|
syl5bb |
|- ( ph -> ( ( ( Im ` A ) = 0 -> ( Re ` A ) <_ 0 ) <-> ( A e. { x e. CC | -. x e. RR } \/ A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) ) |
27 |
|
elun |
|- ( A e. ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) <-> ( A e. { x e. CC | -. x e. RR } \/ A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) |
28 |
27
|
a1i |
|- ( ph -> ( A e. ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) <-> ( A e. { x e. CC | -. x e. RR } \/ A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) ) |
29 |
|
ianor |
|- ( -. ( x e. RR /\ 0 < ( Re ` x ) ) <-> ( -. x e. RR \/ -. 0 < ( Re ` x ) ) ) |
30 |
29
|
bicomi |
|- ( ( -. x e. RR \/ -. 0 < ( Re ` x ) ) <-> -. ( x e. RR /\ 0 < ( Re ` x ) ) ) |
31 |
|
elrp |
|- ( x e. RR+ <-> ( x e. RR /\ 0 < x ) ) |
32 |
|
rere |
|- ( x e. RR -> ( Re ` x ) = x ) |
33 |
32
|
breq2d |
|- ( x e. RR -> ( 0 < ( Re ` x ) <-> 0 < x ) ) |
34 |
33
|
bicomd |
|- ( x e. RR -> ( 0 < x <-> 0 < ( Re ` x ) ) ) |
35 |
34
|
pm5.32i |
|- ( ( x e. RR /\ 0 < x ) <-> ( x e. RR /\ 0 < ( Re ` x ) ) ) |
36 |
31 35
|
bitri |
|- ( x e. RR+ <-> ( x e. RR /\ 0 < ( Re ` x ) ) ) |
37 |
30 36
|
xchbinxr |
|- ( ( -. x e. RR \/ -. 0 < ( Re ` x ) ) <-> -. x e. RR+ ) |
38 |
37
|
rabbii |
|- { x e. CC | ( -. x e. RR \/ -. 0 < ( Re ` x ) ) } = { x e. CC | -. x e. RR+ } |
39 |
|
unrab |
|- ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) = { x e. CC | ( -. x e. RR \/ -. 0 < ( Re ` x ) ) } |
40 |
|
dfdif2 |
|- ( CC \ RR+ ) = { x e. CC | -. x e. RR+ } |
41 |
38 39 40
|
3eqtr4i |
|- ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) = ( CC \ RR+ ) |
42 |
41
|
a1i |
|- ( ph -> ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) = ( CC \ RR+ ) ) |
43 |
42
|
eleq2d |
|- ( ph -> ( A e. ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) <-> A e. ( CC \ RR+ ) ) ) |
44 |
26 28 43
|
3bitr2d |
|- ( ph -> ( ( ( Im ` A ) = 0 -> ( Re ` A ) <_ 0 ) <-> A e. ( CC \ RR+ ) ) ) |
45 |
1
|
biantrurd |
|- ( ph -> ( -. A e. RR+ <-> ( A e. CC /\ -. A e. RR+ ) ) ) |
46 |
3 44 45
|
3bitr4d |
|- ( ph -> ( ( ( Im ` A ) = 0 -> ( Re ` A ) <_ 0 ) <-> -. A e. RR+ ) ) |