| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sqrtcvallem1.1 |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | eldif |  |-  ( A e. ( CC \ RR+ ) <-> ( A e. CC /\ -. A e. RR+ ) ) | 
						
							| 3 | 2 | a1i |  |-  ( ph -> ( A e. ( CC \ RR+ ) <-> ( A e. CC /\ -. A e. RR+ ) ) ) | 
						
							| 4 |  | imor |  |-  ( ( ( Im ` A ) = 0 -> ( Re ` A ) <_ 0 ) <-> ( -. ( Im ` A ) = 0 \/ ( Re ` A ) <_ 0 ) ) | 
						
							| 5 | 1 | biantrurd |  |-  ( ph -> ( -. A e. RR <-> ( A e. CC /\ -. A e. RR ) ) ) | 
						
							| 6 |  | reim0b |  |-  ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) ) | 
						
							| 7 | 1 6 | syl |  |-  ( ph -> ( A e. RR <-> ( Im ` A ) = 0 ) ) | 
						
							| 8 | 7 | notbid |  |-  ( ph -> ( -. A e. RR <-> -. ( Im ` A ) = 0 ) ) | 
						
							| 9 | 8 | bicomd |  |-  ( ph -> ( -. ( Im ` A ) = 0 <-> -. A e. RR ) ) | 
						
							| 10 |  | eleq1 |  |-  ( x = A -> ( x e. RR <-> A e. RR ) ) | 
						
							| 11 | 10 | notbid |  |-  ( x = A -> ( -. x e. RR <-> -. A e. RR ) ) | 
						
							| 12 | 11 | elrab |  |-  ( A e. { x e. CC | -. x e. RR } <-> ( A e. CC /\ -. A e. RR ) ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( A e. { x e. CC | -. x e. RR } <-> ( A e. CC /\ -. A e. RR ) ) ) | 
						
							| 14 | 5 9 13 | 3bitr4d |  |-  ( ph -> ( -. ( Im ` A ) = 0 <-> A e. { x e. CC | -. x e. RR } ) ) | 
						
							| 15 | 1 | biantrurd |  |-  ( ph -> ( -. 0 < ( Re ` A ) <-> ( A e. CC /\ -. 0 < ( Re ` A ) ) ) ) | 
						
							| 16 | 1 | recld |  |-  ( ph -> ( Re ` A ) e. RR ) | 
						
							| 17 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 18 | 16 17 | lenltd |  |-  ( ph -> ( ( Re ` A ) <_ 0 <-> -. 0 < ( Re ` A ) ) ) | 
						
							| 19 |  | fveq2 |  |-  ( x = A -> ( Re ` x ) = ( Re ` A ) ) | 
						
							| 20 | 19 | breq2d |  |-  ( x = A -> ( 0 < ( Re ` x ) <-> 0 < ( Re ` A ) ) ) | 
						
							| 21 | 20 | notbid |  |-  ( x = A -> ( -. 0 < ( Re ` x ) <-> -. 0 < ( Re ` A ) ) ) | 
						
							| 22 | 21 | elrab |  |-  ( A e. { x e. CC | -. 0 < ( Re ` x ) } <-> ( A e. CC /\ -. 0 < ( Re ` A ) ) ) | 
						
							| 23 | 22 | a1i |  |-  ( ph -> ( A e. { x e. CC | -. 0 < ( Re ` x ) } <-> ( A e. CC /\ -. 0 < ( Re ` A ) ) ) ) | 
						
							| 24 | 15 18 23 | 3bitr4d |  |-  ( ph -> ( ( Re ` A ) <_ 0 <-> A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) | 
						
							| 25 | 14 24 | orbi12d |  |-  ( ph -> ( ( -. ( Im ` A ) = 0 \/ ( Re ` A ) <_ 0 ) <-> ( A e. { x e. CC | -. x e. RR } \/ A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) ) | 
						
							| 26 | 4 25 | bitrid |  |-  ( ph -> ( ( ( Im ` A ) = 0 -> ( Re ` A ) <_ 0 ) <-> ( A e. { x e. CC | -. x e. RR } \/ A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) ) | 
						
							| 27 |  | elun |  |-  ( A e. ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) <-> ( A e. { x e. CC | -. x e. RR } \/ A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) | 
						
							| 28 | 27 | a1i |  |-  ( ph -> ( A e. ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) <-> ( A e. { x e. CC | -. x e. RR } \/ A e. { x e. CC | -. 0 < ( Re ` x ) } ) ) ) | 
						
							| 29 |  | ianor |  |-  ( -. ( x e. RR /\ 0 < ( Re ` x ) ) <-> ( -. x e. RR \/ -. 0 < ( Re ` x ) ) ) | 
						
							| 30 | 29 | bicomi |  |-  ( ( -. x e. RR \/ -. 0 < ( Re ` x ) ) <-> -. ( x e. RR /\ 0 < ( Re ` x ) ) ) | 
						
							| 31 |  | elrp |  |-  ( x e. RR+ <-> ( x e. RR /\ 0 < x ) ) | 
						
							| 32 |  | rere |  |-  ( x e. RR -> ( Re ` x ) = x ) | 
						
							| 33 | 32 | breq2d |  |-  ( x e. RR -> ( 0 < ( Re ` x ) <-> 0 < x ) ) | 
						
							| 34 | 33 | bicomd |  |-  ( x e. RR -> ( 0 < x <-> 0 < ( Re ` x ) ) ) | 
						
							| 35 | 34 | pm5.32i |  |-  ( ( x e. RR /\ 0 < x ) <-> ( x e. RR /\ 0 < ( Re ` x ) ) ) | 
						
							| 36 | 31 35 | bitri |  |-  ( x e. RR+ <-> ( x e. RR /\ 0 < ( Re ` x ) ) ) | 
						
							| 37 | 30 36 | xchbinxr |  |-  ( ( -. x e. RR \/ -. 0 < ( Re ` x ) ) <-> -. x e. RR+ ) | 
						
							| 38 | 37 | rabbii |  |-  { x e. CC | ( -. x e. RR \/ -. 0 < ( Re ` x ) ) } = { x e. CC | -. x e. RR+ } | 
						
							| 39 |  | unrab |  |-  ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) = { x e. CC | ( -. x e. RR \/ -. 0 < ( Re ` x ) ) } | 
						
							| 40 |  | dfdif2 |  |-  ( CC \ RR+ ) = { x e. CC | -. x e. RR+ } | 
						
							| 41 | 38 39 40 | 3eqtr4i |  |-  ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) = ( CC \ RR+ ) | 
						
							| 42 | 41 | a1i |  |-  ( ph -> ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) = ( CC \ RR+ ) ) | 
						
							| 43 | 42 | eleq2d |  |-  ( ph -> ( A e. ( { x e. CC | -. x e. RR } u. { x e. CC | -. 0 < ( Re ` x ) } ) <-> A e. ( CC \ RR+ ) ) ) | 
						
							| 44 | 26 28 43 | 3bitr2d |  |-  ( ph -> ( ( ( Im ` A ) = 0 -> ( Re ` A ) <_ 0 ) <-> A e. ( CC \ RR+ ) ) ) | 
						
							| 45 | 1 | biantrurd |  |-  ( ph -> ( -. A e. RR+ <-> ( A e. CC /\ -. A e. RR+ ) ) ) | 
						
							| 46 | 3 44 45 | 3bitr4d |  |-  ( ph -> ( ( ( Im ` A ) = 0 -> ( Re ` A ) <_ 0 ) <-> -. A e. RR+ ) ) |