| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
|
ltle |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. RR -> ( A < 0 -> A <_ 0 ) ) |
| 4 |
3
|
imdistani |
|- ( ( A e. RR /\ A < 0 ) -> ( A e. RR /\ A <_ 0 ) ) |
| 5 |
|
absnid |
|- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
| 6 |
4 5
|
syl |
|- ( ( A e. RR /\ A < 0 ) -> ( abs ` A ) = -u A ) |
| 7 |
6
|
eqcomd |
|- ( ( A e. RR /\ A < 0 ) -> -u A = ( abs ` A ) ) |
| 8 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
| 9 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 10 |
8 9
|
lenltd |
|- ( A e. RR -> ( 0 <_ A <-> -. A < 0 ) ) |
| 11 |
10
|
bicomd |
|- ( A e. RR -> ( -. A < 0 <-> 0 <_ A ) ) |
| 12 |
|
absid |
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
| 13 |
11 12
|
sylbida |
|- ( ( A e. RR /\ -. A < 0 ) -> ( abs ` A ) = A ) |
| 14 |
13
|
eqcomd |
|- ( ( A e. RR /\ -. A < 0 ) -> A = ( abs ` A ) ) |
| 15 |
7 14
|
ifeqda |
|- ( A e. RR -> if ( A < 0 , -u A , A ) = ( abs ` A ) ) |
| 16 |
15
|
eqcomd |
|- ( A e. RR -> ( abs ` A ) = if ( A < 0 , -u A , A ) ) |