| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re |  |-  0 e. RR | 
						
							| 2 |  | ltle |  |-  ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( A e. RR -> ( A < 0 -> A <_ 0 ) ) | 
						
							| 4 | 3 | imdistani |  |-  ( ( A e. RR /\ A < 0 ) -> ( A e. RR /\ A <_ 0 ) ) | 
						
							| 5 |  | absnid |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( A e. RR /\ A < 0 ) -> ( abs ` A ) = -u A ) | 
						
							| 7 | 6 | eqcomd |  |-  ( ( A e. RR /\ A < 0 ) -> -u A = ( abs ` A ) ) | 
						
							| 8 |  | 0red |  |-  ( A e. RR -> 0 e. RR ) | 
						
							| 9 |  | id |  |-  ( A e. RR -> A e. RR ) | 
						
							| 10 | 8 9 | lenltd |  |-  ( A e. RR -> ( 0 <_ A <-> -. A < 0 ) ) | 
						
							| 11 | 10 | bicomd |  |-  ( A e. RR -> ( -. A < 0 <-> 0 <_ A ) ) | 
						
							| 12 |  | absid |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) | 
						
							| 13 | 11 12 | sylbida |  |-  ( ( A e. RR /\ -. A < 0 ) -> ( abs ` A ) = A ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ( A e. RR /\ -. A < 0 ) -> A = ( abs ` A ) ) | 
						
							| 15 | 7 14 | ifeqda |  |-  ( A e. RR -> if ( A < 0 , -u A , A ) = ( abs ` A ) ) | 
						
							| 16 | 15 | eqcomd |  |-  ( A e. RR -> ( abs ` A ) = if ( A < 0 , -u A , A ) ) |