Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
ltle |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. RR -> ( A < 0 -> A <_ 0 ) ) |
4 |
3
|
imdistani |
|- ( ( A e. RR /\ A < 0 ) -> ( A e. RR /\ A <_ 0 ) ) |
5 |
|
absnid |
|- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
6 |
4 5
|
syl |
|- ( ( A e. RR /\ A < 0 ) -> ( abs ` A ) = -u A ) |
7 |
6
|
eqcomd |
|- ( ( A e. RR /\ A < 0 ) -> -u A = ( abs ` A ) ) |
8 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
9 |
|
id |
|- ( A e. RR -> A e. RR ) |
10 |
8 9
|
lenltd |
|- ( A e. RR -> ( 0 <_ A <-> -. A < 0 ) ) |
11 |
10
|
bicomd |
|- ( A e. RR -> ( -. A < 0 <-> 0 <_ A ) ) |
12 |
11
|
pm5.32i |
|- ( ( A e. RR /\ -. A < 0 ) <-> ( A e. RR /\ 0 <_ A ) ) |
13 |
|
absid |
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
14 |
12 13
|
sylbi |
|- ( ( A e. RR /\ -. A < 0 ) -> ( abs ` A ) = A ) |
15 |
14
|
eqcomd |
|- ( ( A e. RR /\ -. A < 0 ) -> A = ( abs ` A ) ) |
16 |
7 15
|
ifeqda |
|- ( A e. RR -> if ( A < 0 , -u A , A ) = ( abs ` A ) ) |
17 |
16
|
eqcomd |
|- ( A e. RR -> ( abs ` A ) = if ( A < 0 , -u A , A ) ) |