| Step | Hyp | Ref | Expression | 
						
							| 1 |  | absnid |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) | 
						
							| 2 | 1 | eqcomd |  |-  ( ( A e. RR /\ A <_ 0 ) -> -u A = ( abs ` A ) ) | 
						
							| 3 |  | 0re |  |-  0 e. RR | 
						
							| 4 |  | ltnle |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A <-> -. A <_ 0 ) ) | 
						
							| 5 |  | ltle |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 6 | 4 5 | sylbird |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( -. A <_ 0 -> 0 <_ A ) ) | 
						
							| 7 | 3 6 | mpan |  |-  ( A e. RR -> ( -. A <_ 0 -> 0 <_ A ) ) | 
						
							| 8 | 7 | imdistani |  |-  ( ( A e. RR /\ -. A <_ 0 ) -> ( A e. RR /\ 0 <_ A ) ) | 
						
							| 9 |  | absid |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( A e. RR /\ -. A <_ 0 ) -> ( abs ` A ) = A ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ( A e. RR /\ -. A <_ 0 ) -> A = ( abs ` A ) ) | 
						
							| 12 | 2 11 | ifeqda |  |-  ( A e. RR -> if ( A <_ 0 , -u A , A ) = ( abs ` A ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( A e. RR -> ( abs ` A ) = if ( A <_ 0 , -u A , A ) ) |