| Step | Hyp | Ref | Expression | 
						
							| 1 |  | absnid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  ( abs ‘ 𝐴 )  =  - 𝐴 ) | 
						
							| 2 | 1 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  - 𝐴  =  ( abs ‘ 𝐴 ) ) | 
						
							| 3 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 4 |  | ltnle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  ↔  ¬  𝐴  ≤  0 ) ) | 
						
							| 5 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  →  0  ≤  𝐴 ) ) | 
						
							| 6 | 4 5 | sylbird | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ¬  𝐴  ≤  0  →  0  ≤  𝐴 ) ) | 
						
							| 7 | 3 6 | mpan | ⊢ ( 𝐴  ∈  ℝ  →  ( ¬  𝐴  ≤  0  →  0  ≤  𝐴 ) ) | 
						
							| 8 | 7 | imdistani | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  ≤  0 )  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 9 |  | absid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  ≤  0 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  ≤  0 )  →  𝐴  =  ( abs ‘ 𝐴 ) ) | 
						
							| 12 | 2 11 | ifeqda | ⊢ ( 𝐴  ∈  ℝ  →  if ( 𝐴  ≤  0 ,  - 𝐴 ,  𝐴 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝐴  ∈  ℝ  →  ( abs ‘ 𝐴 )  =  if ( 𝐴  ≤  0 ,  - 𝐴 ,  𝐴 ) ) |