| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 2 |  | ltle | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝐴  <  0  →  𝐴  ≤  0 ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  0  →  𝐴  ≤  0 ) ) | 
						
							| 4 | 3 | imdistani | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 ) ) | 
						
							| 5 |  | absnid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  0 )  →  ( abs ‘ 𝐴 )  =  - 𝐴 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  ( abs ‘ 𝐴 )  =  - 𝐴 ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  - 𝐴  =  ( abs ‘ 𝐴 ) ) | 
						
							| 8 |  | 0red | ⊢ ( 𝐴  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 9 |  | id | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ ) | 
						
							| 10 | 8 9 | lenltd | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  ↔  ¬  𝐴  <  0 ) ) | 
						
							| 11 | 10 | bicomd | ⊢ ( 𝐴  ∈  ℝ  →  ( ¬  𝐴  <  0  ↔  0  ≤  𝐴 ) ) | 
						
							| 12 |  | absid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 13 | 11 12 | sylbida | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  <  0 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  <  0 )  →  𝐴  =  ( abs ‘ 𝐴 ) ) | 
						
							| 15 | 7 14 | ifeqda | ⊢ ( 𝐴  ∈  ℝ  →  if ( 𝐴  <  0 ,  - 𝐴 ,  𝐴 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 16 | 15 | eqcomd | ⊢ ( 𝐴  ∈  ℝ  →  ( abs ‘ 𝐴 )  =  if ( 𝐴  <  0 ,  - 𝐴 ,  𝐴 ) ) |