Metamath Proof Explorer


Theorem sqrtcvallem1

Description: Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval . (Contributed by RP, 17-May-2024)

Ref Expression
Hypothesis sqrtcvallem1.1 φ A
Assertion sqrtcvallem1 φ A = 0 A 0 ¬ A +

Proof

Step Hyp Ref Expression
1 sqrtcvallem1.1 φ A
2 eldif A + A ¬ A +
3 2 a1i φ A + A ¬ A +
4 imor A = 0 A 0 ¬ A = 0 A 0
5 1 biantrurd φ ¬ A A ¬ A
6 reim0b A A A = 0
7 1 6 syl φ A A = 0
8 7 notbid φ ¬ A ¬ A = 0
9 8 bicomd φ ¬ A = 0 ¬ A
10 eleq1 x = A x A
11 10 notbid x = A ¬ x ¬ A
12 11 elrab A x | ¬ x A ¬ A
13 12 a1i φ A x | ¬ x A ¬ A
14 5 9 13 3bitr4d φ ¬ A = 0 A x | ¬ x
15 1 biantrurd φ ¬ 0 < A A ¬ 0 < A
16 1 recld φ A
17 0red φ 0
18 16 17 lenltd φ A 0 ¬ 0 < A
19 fveq2 x = A x = A
20 19 breq2d x = A 0 < x 0 < A
21 20 notbid x = A ¬ 0 < x ¬ 0 < A
22 21 elrab A x | ¬ 0 < x A ¬ 0 < A
23 22 a1i φ A x | ¬ 0 < x A ¬ 0 < A
24 15 18 23 3bitr4d φ A 0 A x | ¬ 0 < x
25 14 24 orbi12d φ ¬ A = 0 A 0 A x | ¬ x A x | ¬ 0 < x
26 4 25 syl5bb φ A = 0 A 0 A x | ¬ x A x | ¬ 0 < x
27 elun A x | ¬ x x | ¬ 0 < x A x | ¬ x A x | ¬ 0 < x
28 27 a1i φ A x | ¬ x x | ¬ 0 < x A x | ¬ x A x | ¬ 0 < x
29 ianor ¬ x 0 < x ¬ x ¬ 0 < x
30 29 bicomi ¬ x ¬ 0 < x ¬ x 0 < x
31 elrp x + x 0 < x
32 rere x x = x
33 32 breq2d x 0 < x 0 < x
34 33 bicomd x 0 < x 0 < x
35 34 pm5.32i x 0 < x x 0 < x
36 31 35 bitri x + x 0 < x
37 30 36 xchbinxr ¬ x ¬ 0 < x ¬ x +
38 37 rabbii x | ¬ x ¬ 0 < x = x | ¬ x +
39 unrab x | ¬ x x | ¬ 0 < x = x | ¬ x ¬ 0 < x
40 dfdif2 + = x | ¬ x +
41 38 39 40 3eqtr4i x | ¬ x x | ¬ 0 < x = +
42 41 a1i φ x | ¬ x x | ¬ 0 < x = +
43 42 eleq2d φ A x | ¬ x x | ¬ 0 < x A +
44 26 28 43 3bitr2d φ A = 0 A 0 A +
45 1 biantrurd φ ¬ A + A ¬ A +
46 3 44 45 3bitr4d φ A = 0 A 0 ¬ A +